
Iptscrae Language
Guide
Version 1

Copyright © 2000 Communities.com, All rights reserved.

Iptscrae Language Guide, version 1

February, 2000

This document and the software described in it are furnished under license and may be used or copied only
in accordance with such license. Except as permitted by such license, the contents of this document may not
be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written
permission of Communities.com.

The contents of this document are for informational use only, and the contents are subject to change without
notice. Communities.com assumes no responsibility or liability for any errors or inaccuracies that may appear
in this book.

Restricted Rights Legend. For defense agencies: Use, reproduction, or disclosure is subject to restrictions set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
52.227-7013, and or similar successor clauses in the FAR, or the DOD or NASA FAR Supplement.

Unpublished right reserved under the Copyright Laws of the United States.

The Palace, PalacePresents, Palace Authoring Wizard, PalaceEvents, PalaceServer, The Palace Viewer, The
Palace Authoring Tool, The Palace Viewer logo and The Palace logo are either trademarks or registered
trademarks of Communities.com. All rights reserved. All other trademarks are the property of their respective
owners.

Printed in the USA.

The Palace Iptscrae Language Guide iii

Chapter 1 An Introduction to Iptscrae...9

What is Iptscrae?... 9

Reverse Polish notation... 10

Scripting the stack ... 11

How to run Iptscrae ... 11

Entering Iptscrae in the input box (“Slash Commands”) 12

Iptscrae in Authoring Mode ... 13

Iptscrae in ASCII: Editing script files ... 14

Anatomy of a script file .. 15

Specifying room data .. 19

Specifying spot data.. 23

Chapter 2 Iptscrae Language Reference..25

Data types ... 25

Symbols (variable names)... 25

Numbers (integers) .. 26

Strings (string literals) ... 26

Arrays.. 26

Atomlists ... 26

Special-Case Symbols .. 27

Event handlers... 28

Commands and functions.. 31

Cyborg commands and functions ... 32

Spot commands and functions.. 48

Paint commands and functions... 55

Sound commands and functions... 59

Flow commands and functions ... 60

General commands and functions .. 64

Operators... 81

Standard Operators .. 81

Assignment Operators .. 86

Chapter 3 Quick Reference ...89

Appendix A Adding Machine Exercise ...97

Appendix B Code Limitations ..99

iv The Palace Iptscrae Language Guide

Appendix C The Palace Client Plugin API ... 101

Index.. 103

The Palace Iptscrae Language Guide v

Who should read this manual

Preface

This manual describes how use to the Palace Iptscrae Language. Iptscrae (pig-latin for
“script”) is a Forth-like interpreted language used exclusively by the Palace software.
It possesses a full compliment of commonly-needed operators and functions, as well as
over 100 Palace-specific commands, keywords and functions.

Who should read this manual

This manuals is designed for all users, owners, and server operators that want to
implement the advanced features the Iptscrae language provides. This document
assumes you have read the section called Your Cyborg.ipt File in The Palace Users Guide.

In addition, you will want to study the default script files that come with the Palace
software. There are two "script files" in the Palace system: the Cyborg.ipt (also called
the cyborg script or user script) which handles user-based actions, and a server script
aka room script (also referred to as the Mansion Script due to its default contents) that
defines your Palace site and handles room-based actions. The term server script will
be used throughout this document to refer to this second file.

Sections of this manual

This manual has the following sections:

• An Introduction to Iptscrae

Introduces Iptscrae, and describes how to run it.

• Iptscrae language Reference

Describes the Iptscrae language, including data elements and commands..

In addition, a number of appendices are included:

• Quick Reference

A table of Iptscrae commands with brief summaries

• Appendix A: Adding Machine exercise

Provides a sample Adding Machine script, describing step by step how to create
this Iptscrae program

• Appendix B: Code standards

vi The Palace Iptscrae Language Guide

Describes Iptscrae data handling boundaries.

• Appendix C: Palace Client plugin API

Describes how you can become a Palace development partner, creating your own
plug-in to the Palace.

• Index

Manual conventions

This manual has the following conventions:

• Technical terms appear in boldface italic in the text in their first appearance,
usually accompanied by a definition.

• Graphical User Interface (GUI) elements, such as menu items and buttons, appear
in boldface.

• References to other books, chapters, or sections are in Italic.

NOTE – Notes to the user look like this.

All code is printed in Courier font; commands and keywords are printed in
UPPERCASE. This is not necessary as far as the script’s operation is concerned - you can
write commands in lowercase letters and use whatever font you want - but
capitalization helps the code stand out from the data and makes it easier to read scripts
written by others. For example:

"Welcome to " SERVERNAME & SAY

Placeholders for actual values are written in italics.

targetsName WHOPOS
selectedSpot 2 SETSPOTSTATE

Placeholders for string values always appear in double quotes (" "). These double
quotes must remain in the code; do not remove them. For example:

"filename" MIDIPLAY
"This " "and " & "that." & tempString =

Symbols (variable names) begin with lowercase letters, although they may possess
median capitals or underscores. Again; this is not necessary, but it makes your
variables a little easier to find. For example:

myNewVariable
another_variable

The Palace Iptscrae Language Guide vii

Manual conventions

Optional arguments (those that may be included or left out of the command) are
enclosed in anglebrackets (< >). For example:

‘banip <minutes> ip

Note that this goes against traditional "IBM-style" programming notation, which uses
square brackets ([]) to indicate optional arguments. This is because Iptscrae uses
square brackets to designate arrays.

Indentation indicates supporting code. All text supporting any ROOM, DOOR, SPOT,
SCRIPT or ON EVENT keyword is indented, and the indent is decreased when the
supporting code ends (i.e., after any ENDROOM, ENDDOOR, ENDSPOT or ENDSCRIPT
keyword, and on the closing curly bracket of an atomlist or event handler). This lets
you tell at a glance where the code for each section starts and stops. For example:
ROOM

ID 100
NAME “Room Name”
PICT “picture.gif”
DOOR

ID 1
DEST 200
OUTLINE 10,10 50,10 50,200 10,200

ENDDOOR
SPOT

ID 2
OUTLINE 200,50 400,50 400,200 200,200
SCRIPT

ON ENTER {
“Hello!” SAY

}
ENDSCRIPT

ENDSPOT
ENDROOM

Other sources of information
Besides this Language Guide , you can use many other related manuals for
administering your personal server, becoming an operator, and running The Palace
client software. These manuals are all available from The Palace website section.

• Server Guides. These manuals tell you how to obtain, install, setup, and run your
own Palace server. Macintosh, Unix, and Windows 95/98/NT versions are
available.

• Operator Guide. Describes the responsibilities of an operator, and details the client's
operator interface and commands.

• User’s Guide. This manual describes how to use obtain, setup, and use the Palace
client software. You will need the Palace client to perform owner/operator actions
for your site. Both a Windows and Macintosh version are available.

In addition to online manuals, check out The Palace website for support, information,
and online documentation at www.thepalace.com.

viii The Palace Iptscrae Language Guide

The Palace Iptscrae Language Guide 9

1 An Introduction to
Iptscrae

This section introduces Iptscrae:

• What is Iptscrae? on page 9

• Reverse Polish notation on page 10

• How to run Iptscrae on page 11

• Scripting the stack on page 11

• Anatomy of a script file on page 15

What is Iptscrae?

Iptscrae is a Forth-like interpreted language used exclusively by the Palace software. It
possesses a full compliment of commonly-needed operators and functions, as well as
over 100 Palace-specific commands, keywords and functions.

Here is a sample Iptscrae script:

ON OUTCHAT {
OCHAT GLOBAL
CHATSTR OCHAT =
{

"coffee" "$1" GREPSUB WHOPOS ADDLOOSEPROP
} CHATSTR "^buy (.*) coffee$" GREPSTR IF

}

10 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

Reverse Polish notation

Unlike other scripting languages you may have seen, Iptscrae might appear rigidly
formal and possesses almost no punctuation. Iptscrae’s syntax also uses RPN (“Reverse
Polish Notation”), a style of command structuring that may seem a little "backward"
until you get used to it…

RPN uses what is called a postfix word ordering. In a sense, this is "backwards" from
the usual infix word ordering that most of us are used to. For example, we are using
infix word ordering when we say "two plus three." In postfix word ordering, it would
be "two three plus.” This is what the Palace software expects to see.

While saying “two three plus” might seem quite strange to you, to a computer it makes
a good deal of sense. After all, the computer can’t do anything with the operator until
it possesses both operands; it can’t perform an operation until it has all the data
needed. In Iptscrae, as in many other programming languages, all data is stored on a
stack until you pop it off and use it for something (see below for more information on
how the stack operates). We have two pieces of data here — the number 2 and the
number 3 — so in strictly logical terms, when we say “2 3 +”, what we’re really telling
the machine is:

Put 2 on the stack.

Put 3 on the stack.

Add the two top things on the stack.

Place the result on the stack.

In plain English, you can think of this as placing the verb (action) at the end of the
sentence or after the direct object. For example, instead of saying "I walk to the store,"
you'd say "I store walk."

Here are a few more examples of the differences between infix and postfix word
ordering…

Infix: Postfix:

2 + 3 2 3 +

(2 + 3) * 4 2 3 + 4 *

X = 4 - 3 4 3 - X =

printf("Howdy") "Howdy" Say

The Palace Iptscrae Language Guide 11

Scripting the stack

Scripting the stack

All Iptscrae functions put the results of some operation onto something called the
stack. If you’re not familiar with the use of a stack, it can be a tricky concept to get
hold of. Here’s one way to think about it:

Imagine a spring-loaded stack of dishes like they have in cafeterias. The spring is set so
that only one dish is available at a time. When you pop one off the stack, the rest get
pushed up so that a new one becomes available; conversely, if you put a dish on the
stack, the ones beneath it get pushed down so that your new one is the only one
available.

There you have your stack metaphor, and that’s pretty much how it works; except that
putting something on the stack is called “pushing” and taking something off the stack
is called “popping.” In fact, if you ever want to remove the top-most value on the
stack, you can always issue a POP command, which discards the top-most value and
makes the next one available. You can also swap the two top-most items by issuing a
SWAP command. Pushing occurs automatically. To see this in action, type the following
statements into your Palace client input window:

/ “one” “two” “three” SAY

/ “one” “two” “three” SWAP SAY

/ “one” “two” “three” POP SAY

/ “one” “two” “three” POP POP SAY

So now you can see that when we tell Iptscrae “ 2 3 + “, the following steps occur:

1. Push 2 onto the stack

2. Push 3 onto the stack

3. Pop the top two items off the stack, add them, and push the result onto the stack

When it’s done, the result (5) is sitting on the top of the stack, where we can easily get
at it with another command.

How to run Iptscrae

Depending on what you’re trying to do, there are several ways to enter Iptscrae
commands. “One-shot” commands can be typed directly into the Palace client input
box, or more permanent changes can be made to the script by owners and operators in

12 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

authoring mode. For those interested in total control, any word processing program
that can save as ASCII (text only) can also edit Iptscrae script files. The following
sections explain how to do all of these things.

Entering Iptscrae in the input box (“Slash Commands”)
A good way to get started with Iptscrae (or to test the functionality of individual
commands) is to launch The Palace client, enter any room that allows user scripts, and
type your commands straight into your client input window. To let the Palace software
know that the coming text is a command (as opposed to mere speech), you must begin
the line with a forward slash (/).

For example, if I type:

10 10 SETPOS

everyone in the room will see me say “10 10 SETPOS”. Not what I wanted. But if I
type:

/ 10 10 SETPOS

the SETPOS command is executed instead, and my avatar moves to position 10 , 10 on
the screen.

Like any complex system, the best way to get a feel for Iptscrae is to just jump in and
start playing with it. The following examples will give you a good start. As you can see
from the inclusion of the forward slash, these lines were intended to be typed into the
Input Box in the Palace client. To paste them into scripts, remove the preceding slash.

/ "Hello" SAY

This says "Hello".

/ "My name is " USERNAME & SAY

This shows how to add two pieces of text together. USERNAME is a keyword that
resolves to your name. The ampersand (&) is the concatenator; this operator takes
the top two things off the stack and sticks them together into one big string
variable, which it pushes back onto the stack. The SAY command takes this variable
and sticks it in a cartoon balloon.

/ 2 2 + ITOA SAY

This one adds 2 and 2 together, converts the result to ASCII text (using the ITOA
function), and displays the results in a cartoon balloon.

/ 2 3 * 4 + ITOA SAY

This one multiplies 2 and 3 together, then adds 4, then converts the answer from
integer to ASCII and says the result.

/ "Hello" 10 40 SAYAT

The Palace Iptscrae Language Guide 13

How to run Iptscrae

This one says hello at the specified X (horizontal) Y (vertical) position on the
screen. X cannot exceed 511. Y cannot exceed 383. This is because the screen
dimensions of the Viewing Area are 512 by 384.

/ 100 RANDOM ITOA SAY

This one causes you to say a random number. Try it a few times; each time it will
be different.

/ "Hello" 512 RANDOM 384 RANDOM SAYAT

This one says hello at a random position on the screen; try it a few times. 512
RANDOM determines a random number from 0 to 511. 384 RANDOM determines a
random number from 0 to 383.

/ 10 10 SETPOS

This one moves your avatar to position 10, 10 on the screen. Try substituting
different numbers.

/ 512 RANDOM 384 RANDOM SETPOS

This one moves you to a random position. Try it a few times.

By playing around with these simple examples you can get a feel for the flow of the
language. Once you understand what these examples are doing, you can move on to
creating your own, more complex, scripts.

Iptscrae in Authoring Mode
When in authoring mode (select Authoring Mode from your client’s Operator Menu as
described in The Palace Operators Guide), you can edit the script of any spot in the
current room.

1. Select the spot to be edited.

2. Double-click within its boundaries (alternately, you can select Door Info from the
Operator Menu while the spot is selected). The Door Info window will appear.

3. Click Script (Macintosh) or Edit Script (Windows). You’ll see the scripting window
(shown in Windows version):

14 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

This window is little more than a large scrolling textbox. Any scripts already associated
with the selected spot will appear here. By directly editing the text in this window and
clicking OK (or selecting Save for Mac users), you cause the server to update the script
file. The new script begins functioning almost immediately (this might take up to a
minute on slower systems or under bad network conditions).

NOTE – The Script Edit window displays only the Iptscrae code, not the Room/Spot
description code.

To see the scripting window in action, try the following simple example:

1. Create a new room and put a door in it.

2. Double-click on the door to bring up the Door Info window.

3. From this window, make the door’s Type Normal. This turns it into a spot.

4. Click Script to pull up the scripting window.

5. Now add a simple event handler (like this one, for instance…)

ON SELECT {
“I selected the Spot!” SAY

}

6. Click Ok (or select Save for Macintosh) and turn authoring mode off.

7. Now test the script by clicking on your new spot.

Iptscrae in ASCII: Editing script files
Using the scripting window in the Palace client doesn’t provide you with access to
everything. The only way to obtain 100% access to the contents of the script is to edit it
directly, which can be done using any word processing program. The only stipulation

The Palace Iptscrae Language Guide 15

Anatomy of a script file

is that the word processor must be capable of saving as ASCII (“text only”), and
fortunately, it’s hard to find one that isn’t. Simply open the script file and edit it as you
would any other document; but be sure to make a backup copy first!

Never edit the server script while the server is running. This may cause overwrite
errors, which can corrupt the file and/or cause your server to hang. Always save your
server and make a backup before modifying your peserver.pat file.

When you have finished editing the script file, save it (remember: text only) and
launch the server. If your script file is well-structured, you’ll see no error messages as
the server sets up your Palace site. If you're a Windows or Macintosh user, the next
thing you see will be the server interface itself. Congratulations; your new script has
taken effect!

Anatomy of a script file

Although to beginners Iptscrae might appear to be an irregular mass of confusing
commands and oddly-ordered references, in fact it’s really quite a formal language,
with a rigid and symmetrical structure all script files must adhere to. You got a glimpse
of this structure while editing your own cyborg.ipt file (see The Palace Users Guide);
you’ve probably also seen it in the scripting window while you were in authoring
mode. The basic structure looks like this:

ON EVENT {
command

}
ON EVENT {

command
{

atomlist
}

}

Basic Event Handling Structure

This example shows two event handlers. The first possesses only a single command,
while the second possesses a command and an atomlist (see the following
paragraphs). Note that an event handler always possesses a pair of curly brackets that
denote its portion of the script. Any or all of the possible event handlers may appear
here. Within each handler, any number of individual commands or atomlists may
appear. The only limit is the total size of all scripts for the current room, which should
not exceed 15.8 kilobytes in size (and that's an awful lot of Iptscrae).

Before moving on to the next level of the script structure, a note on terminology is
necessary. The Palace community uses the word script in a number of different ways.
While it is true that scripts are fractal in nature (i.e., small “scripts” can be put together
to create larger things which might just as easily be called “scripts”), for purposes of
this manual we need to differentiate these things semantically. The following
terminology makes things a bit more clear:

16 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

• Scripts

Scripts are demarcated by the keywords SCRIPT and ENDSCRIPT; they are
comprised of event handlers. Note that except for the absence of the keywords
SCRIPT and ENDSCRIPT, your Cyborg.ipt is a special type of script (i.e., you could
paste your entire Cyborg.ipt into the SCRIPT... ENDSCRIPT section of a single
spot in your Palace; most of the commands would work just fine). Because both the
Cyborg.ipt and the server script can be opened via word processor, edited
individually and saved in ASCII format ("text only"), they are referred to as your
script files.

• Event handlers

Event handlers (or simply “handlers”) are demarcated by the keywords ON EVENT
and a pair of curly brackets. They are comprised of individual commands and
atomlists. There are ten event handlers in the current version of Iptscrae: ON
ALARM, ON ENTER, ON INCHAT, ON LEAVE, ON LOCK, ON MACRO0-ON MACRO9,

ON OUTCHAT, ON SELECT, ON SIGNON and ON UNLOCK.

• Commands and atomlists

A handler may contain a single Iptscrae command (such as “Hello World!” SAY),
or a sequence of commands (like “100 RANDOM 50 + tempVariable =
tempVariable ITOA SAY”). These commands are executed in linear order when
the event handler containing them is triggered. For flow control reasons, however,
it is sometimes desirable to break complex handlers up into smaller segments.
These segments are called atomlists. Atomlists are demarcated by pairs of curly
brackets occurring within event handlers. They are comprised of individual
commands and (possibly) even smaller nested atomlists.

Another word for handler would be routine. Another word for atomlist would be
subroutine.

When working with the Cyborg.ipt file, this is as much as you need to know; since
there is only one Cyborg (you), all handlers in the script obviously refer to that entity.
When working with the server script things get more complex, and two additional
levels must be added to the structure we have just created. These two new levels
appear above the level of “scripts” — they are doors/spots and rooms.

Here’s how it works… Just as commands and atomlists are contained within handlers,
handlers in the server script are found only within scripts (those clearly-marked
SCRIPT ... ENDSCRIPT areas in the script file). Scripts are themselves contained
within spots (one script per spot). Finally, spots (and their cousins, doors) are
contained within rooms. The following three bullet points, then, would be placed above
the previous three:

• Script files

The server script is a script file (like Cyborg.ipt, it can be edited externally via
word processor and saved as ASCII (text only). It contains server data
(“preferences”) and rooms.

• Rooms

Rooms contain room data (some of which may be addressed via authoring mode,
and some of which can only be viewed when editing the script file manually) and
spots.

The Palace Iptscrae Language Guide 17

Anatomy of a script file

• Spots

Spots (including doors) are comprised of spot data (some of which may be
addressed via authoring mode, and some of which can only be viewed when
editing the script file manually) and scripts (which are demarcated by the
keywords SCRIPT ... ENDSCRIPT, as explained above).

All elements higher than event handlers — scripts, doors, spots and rooms — are
identified by special keywords indicating where they begin and end. These keywords
are:

Demarcation Keywords

Correct use of these keywords is crucial to the successful operation of the server script.
The keywords are shown in BOLD CAPITALS in this example:

ROOM

; Room Data

DOOR

; Door Data

ENDDOOR

SPOT

; Spot Data

SCRIPT

ON EVENT {

Command

Command

}

ON EVENT {

Command

{

AtomList

}

{

AtomList

}

}

ENDSCRIPT

ENDSPOT

ENDROOM

Basic Room Structure

Element Begin End

Room ROOM ENDROOM

Spot SPOT ENDSPOT

Door DOOR ENDDOOR

Script SCRIPT ENDSCRIPT

18 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

In addition to the basic layout of keywords, this simple example also illustrates the
types of “plurality” a script file can accommodate. Multiple commands and atomlists
can be placed within a single handler, and multiple handlers can be placed within the
SCRIPT ... ENDSCRIPT region of a single spot (there can only be one SCRIPT ...
ENDSCRIPT region per spot, however).

Let’s examine a sample room from the original “Mansion” Palace to see how this
structure is put to use in real life. The following code was taken from the room called
Heaven’s Gate...

ROOM

ID 777

NAME "Heaven’s Gate"

PICT "Heaven.gif"

ARTIST "Elaine Alderette"

DOOR

ID 1

DEST 103

OUTLINE 0,309 512,313 512,384 0,384

ENDDOOR

SPOT

ID 2

OUTLINE 35,35 96,35 94,76 34,77

SCRIPT

ON ENTER {

“FazeIn” SOUND

CLEARPROPS

"Halo" DONPROP

8 SETCOLOR

}

ENDSCRIPT

ENDSPOT

SPOT

ID 3

OUTLINE 387,24 444,21 437,57 390,51

SCRIPT

ON SELECT {

"palace://mansion.thepalace.com:1313" NETGOTO

}

ENDSCRIPT

ENDSPOT

ENDROOM

Example Room ("Heaven’s Gate")

In this example, the room is constructed in nested levels of detail: Scripts reside within
handlers, handlers reside within the areas indicated by SCRIPT and ENDSCRIPT
keywords, SCRIPT ... ENDSCRIPT regions reside within doors or spots, which reside

The Palace Iptscrae Language Guide 19

Anatomy of a script file

within the Room itself. It is the rigidity of this structure that allows the server to
quickly locate and execute the correct actions at the correct times; this is key to the
power of the Palace.

NOTE – ON INDENTING: Although indenting your code is considered good
programming practice and is definitely recommended for Iptscrae programmers, it is
not strictly necessary, nor is it aided or enforced in any way by the software. In other
words, it’s up to you. But it’s hard to imagine anything more confusing than
unindented Iptscrae…

Specifying room data
Every room in a server script begins with a block of data, only some of which is
accessible via authoring mode. This “room data block” will contain some or all of the
following commands:

ROOM

ID number

PRIVATE

NOPAINTING

NOCYBORGS

HIDDEN

NOGUESTS

NAME "Room Name"

PICT "picture.gif"

ARTIST "Artist Name"

PICTURE ID number NAME "another.gif" <TRANSCOLOR number> ENDPICTURE

The Room Data Block

The Room block has the following components.

ID number

This line indicates the roomID assigned to this room in the script. Although this
number may be assigned by whatever arbitrary means you wish, there must be a
number assigned, and it must be unique to the room. In other words, it’s perfectly fine
to number rooms sequentially, or to skip numbers between rooms, or to put rooms in
illogical order, but every room must possess an ID which is different from any other
room’s ID.

20 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

PRIVATE

PRIVATE

This line, if it exists, hides the number of people in the room. Generally, when a
user looks in the Rooms Window (via the Options Menu in the Palace client), each
room is shown with the number of people currently in that room. Private rooms,
on the other hand, possess a dash instead of a number. The only way to tell the
number of users in a private room is to enter it. This line can be toggled in
authoring mode via the Private option in the Room Info window.

NOPAINTING

NOPAINTING

This line, if it exists, prohibits the use of all paint commands in the room. It is a
good idea to use this command in rooms with a large amount of scripted activity
(looping alarms, for example), as painting can seriously affect the speed of events
in the room. This line can be toggled in authoring mode via the No Painting option
in the Room Info window.

NOCYBORGS

NOCYBORGS

This line, if it exists, prohibits user scripts (also known as “cyborg scripts”) in the
room. It is a good idea to use this command in rooms with a large amount of
scripted activity (for example, alarms), as well as in rooms where fairly large
numbers of people are expected to gather, as user scripts can seriously affect the
speed of events in the room. This line can be toggled in authoring mode via the No
User Scripts option in the Room Info window.

HIDDEN

HIDDEN

This line, if it exists, keeps the room from showing up in the Rooms Window. For
all intents and purposes, the room doesn’t exist for non-operators (owners and
operators still see all rooms in the Palace). Note that non-operators can still enter
the room via a door or by using the GOTOROOM command if they know the roomID.
This line can be toggled in authoring mode via the Hidden option in the Room
Info window.

NOGUESTS

NOGUESTS

This line, if it exists, prohibits Guests from entering the room (making the room
into a “members only” room). This line can be toggled in authoring mode via the
No Guests option in the Room Info window.

The Palace Iptscrae Language Guide 21

Anatomy of a script file

NAME

NAME "Room Name"

This line indicates the name of the room as it will appear in the Status Bar (just
beneath the Viewing Area in the Client interface) and when accessed by the
ROOMNAME command. The room name can be changed in authoring mode via the
Room Info window.

PICT

PICT "picture.gif"

This line indicates the name of the .GIF image used as the background of the room.
Whenever a user enters the room the Palace client checks to see if it possesses this
graphic, and requests it from the server if necessary. The background graphic of a
room can be changed in authoring mode via the Room Info window.

NOTE – All background graphics should be 512 by 384 pixels in size (since this is the
size of the client’s Viewing Area; larger images will not be seen in their entirety, and
smaller images will not fill the screen). To avoid unwanted colorshifts, the Palace
Palette should be used for all Palace art (this palette can be extracted from any of the
images that come with the Palace software).

The Palace client for Macintosh version 2.3 can display .JPG files as well as .GIFs. To
support older Macs and Windows users, however, GIF images must be still made
available. When entering a room for which both file types exist, Macs version 2.3+ will
request the JPG file only, while older Macs and Windows clients will request the GIF
file only.

ARTIST

ARTIST "Artist Name"

This line indicates the name of the artist whose work appears in the room. The name
can be changed in authoring mode via the Room Info window.

PICTURE ... ENDPICTURE

PICTURE ID number NAME "picture" ENDPICTURE

This line indicates the name of a graphic (.GIF) that will be used to animate a spot in
the room. Whenever a user enters the room the client checks to see if it possesses all
the graphics called for, and requests any graphics it needs from the server.

If additional graphics will be used in the room (i.e., anything besides the background
image itself), each must possess its own PICTURE ... ENDPICTURE line. These
pictures will appear, disappear and do their interactive stuff behind all avatars and
props (the "foreground" layer) but in front of the room’s "background" layer, in what is
called the "midground" layer. Within this layer, midground pictures can be stacked and
manipulated as desired.

22 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

Each picture in the midground must have a unique ID assigned to it. The ID of a
picture can be any number at all — the order doesn’t matter — but every graphic in the
room must possess an ID that is different from the ID of any other graphic in the room.

TRANSCOLOR

TRANSCOLOR number

This command, which may optionally be included in the PICTURE ... ENDPICTURE
line, is used to inform the Mac client which of the picture's 256 colors (if any) should be
displayed as transparent, revealing whatever exists beneath. If this command is left
out, the Mac client will use whatever transparency color the picture was originally
created with. The Windows client will do this in any case.

A TRANSCOLOR command is automatically inserted into the PICTURE ... ENDPICTURE
line whenever a new picture is assigned to a spot in authoring mode. The default
number inserted is 0 (zero); i.e., by default, it is assumed that the graphic uses the
color 0 as the transparent, or "alpha" channel. Mac-based operators may address this
value directly via the Door Info window, and must set it correctly (or remove it via
ASCII editing) so that other Mac users will see the transparent effects correctly. The
following table explains how a sample picture will be displayed on each type of client
under various circumstances; our sample picture uses color 114 as the transparent
color.

NOTE – Windows-based operators: The Windows client does not allow operators to
affect the TRANSCOLOR value via authoring mode, and as the table above indicates, it
ignores the TRANSCOLOR command completely (using the actual alpha channel of the
image instead). To make sure your Windows modifications will display properly on the
Mac client, you have two choices. Either:

A. Create your GIFs using the color 0 (white) as the transparent color. If you have
white regions in your picture that you want to appear visible (i.e., not transparent), use
the alternate white (color number 215) for them. This method will allow you to assign
new pictures to new spots in authoring mode later, without having to worry about the
TRANSCOLOR setting, or

USER OS TRANSCOLOR COMMAND (IN SERVER SCRIPT)

TRANSCOLOR 0
(default inserted via
authoring mode or by
editing script manually)

TRANSCOLOR 114
(set via Mac wizard in
authoring mode or by
editing script manually)

<no TRANSCOLOR
command>
(TRANSCOLOR can only be
removed or avoided by
editing the script manually)

Windows
Client

Right Right Right

Mac
Client

Wrong
(color 114 will be visible,
color 0 will be invisible)

Right Right

The Palace Iptscrae Language Guide 23

Anatomy of a script file

B. Edit your server script manually, using a word processor capable of saving as ASCII
(text only). You may choose to replace all of your "TRANSCOLOR 0" commands with the
appropriate numbers, or you can simply remove them entirely.

Specifying spot data
Like rooms, every spot (including doors) begins with a block of special data, only some
of which is accessible via the Scripting Window. This “Spot Data Block” will contain
some or all of the following commands:

SPOT

ID number

NAME "Spot Name"

OUTLINE x1,y1 x2,y2 x3,y3 ...

PICTS pictureID,xOffset,yOffset ... ENDPICTS

SCRIPT

ENDSCRIPT

The Spot Data Block

ID

ID number

This line indicates the spotID assigned to this spot in the room. Although this number
may be assigned by whatever arbitrary means you wish, it must be here, and it must
be unique to the spot. Again, it’s perfectly fine to number spots sequentially, or to skip
numbers between spots, or to put spots in any illogical order you want, but every spot
must possess an ID that is different from any other spot in the room.

NAME

NAME "Spot Name"

This line indicates the name of the spot as it will appear if a SPOTNAME command is
used. The name of a spot can be changed in authoring mode via the Door Info
window.

OUTLINE

OUTLINE x1,y1 x2,y2 x3,y3 < ... >

This line indicates the positions of all points (vertices) that determine the shape of the
spot; each x,y specifies the position of a single point in the outline. Although the
default doors created by selecting New Door from the Operator Menu always possess
four points, by editing this line manually you can create doors and spots with any
number of points greater than two (Mac users can set the number of points via the
Spot Info window). As usual, all “x” values must be between 0 and 511, while all “y”
values must be between 0 and 383.

24 The Palace Iptscrae Language Guide

1 An Introduction to Iptscrae

PICTS ... ENDPICTS

PICTS pictureID,offsetX,offsetY < ... > ENDPICTS

This line indicates the IDs and relative positions of the midground graphics that will be
used to animate the spot. The data between the keywords is arranged in “triplets,”
each made up of three numbers (e.g.: “100,10,20” or “5,-25,0”). Each triplet describes
one of the spot’s states: the first triplet describes state 0, the second triplet describes
state 1, the third describes state 2, and so on.

Each triplet — each state — is defined by a pictureID, an xOffset, and a yOffset. The
pictureID specifies which graphic will be displayed when the spot enters the State.
These IDs are the same as those specified in the PICTURE ... ENDPICTURE line of the
Room Data Block. The xOffset indicates how far the graphic will be shifted to the left
(negative) or right (positive), relative to the spot’s actual location. The yOffset indicates
how far the graphic will be shifted to upward (negative) or downward (positive),
relative to the spot’s actual location.

The graphics associated with a spot’s states can be changed in authoring mode by
selecting Edit Pictures from the Door Info window. The order in which these graphics
are displayed in the Pictures List is the same as the "state order," i.e.: the first picture
listed — “NONE” by default — represents state 0, the second is state 1, the third is state
2, and so on.

To change the X and Y offsets of a picture while in authoring mode:

1. Use SETSPOTSTATE to set the spot to the state you want to change.

2. Use SETPICLOC to move the picture relative to the spot’s position.

SCRIPT ... ENDSCRIPT

SCRIPT

 <handlers>

ENDSCRIPT

These lines (if they exist) indicate the beginning and end of a spot’s script (as opposed
to “Spot Data”). Everything appearing between the keywords SCRIPT and ENDSCRIPT is
part of the script, and may also be accessed via the Scripting Window in authoring
mode.

The Palace Iptscrae Language Guide 25

2 Iptscrae Language
Reference

This section is a reference to the Iptscrae language:

• Data types on page 25

• Event handlers on page 28

• Commands and functions on page 31

• Operators on page 81

Iptscrae possesses over 100 specialized commands and keywords, as well as its own
versions of many commonly-used operators and functions; each of these represents a
wide range of interactive possibilities awaiting your imagination.

Data types

The Palace is integer-based (meaning that it works in terms of whole numbers), but
barring floating-point variables, the software can handle all basic data types: symbols
(variables), numbers (integers), strings (string literals), atomlists (subroutines) and
arrays, as well as a number of special-case symbols and reserved keywords.

Symbols (variable names)
Symbols must start with a letter, and may contain any combination of letters, numbers
and the underscore. They may not contain any spaces, and have a maximum length of
31 characters. Examples:

x
plan9
my_really_big_variable

26 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Numbers (integers)
Numbers in Iptscrae are stored as 32 bit sized integers. No floating-point is allowed.
Numbers must be specified in decimal notation using the digits 0 through 9, with an
optional leading (-) for negative numbers. Examples:

2
-32
4283748

Strings (string literals)
String literals must be encased in double quotes, for Example "string”. If you need to
include a quote symbol within a string, precede it with a backslash: “these
\”doublequotes\” are okay”. You can create long strings by concatenating multiple
strings together using the & operator (see Operators on page 81). Examples:

"Hello"

"A Flock " "of Words" &

"Suddenly, Fred shouted \"Look out!\" and hit the dirt."

Arrays
An array is an ordered list of other Iptscrae data types. Arrays may be declared with
the ARRAY command or by encasing the elements of the array in square brackets
([and]). You use the GET function to extract an item from an array, use the PUT
command to insert an item into an array, and the FOREACH command to perform an
operation on each item in an array. Arrays can be composed of different data types,
including other arrays. Examples:

[100 200 300]
["Hello" "World"]
[100 "Hello" [0 1 2]]
5 7 9 ARRAY

Atomlists
Atomlists are small Iptscrae scripts, or "subroutines." They can contain all other data
types, including other atomlists. Some commands (such as EXEC, IF, WHILE, ALARMEXEC
and FOREACH) operate on atomlists (rather than in them, as most other commands do).
Atomlists must be encased in curly brackets ({and}). Examples:

{ 1 tempVar = }
{ "Howdy" SAY }
{

The Palace Iptscrae Language Guide 27

Data types

23 firstVar =
secondVar firstVar - deltaVar =

}

Special-Case Symbols

CHATSTR

CHATSTR is a reserved word and a special-case variable in Iptscrae. Whenever a script is
executing in response to an INCHAT or OUTCHAT event, CHATSTR represents the chat text
itself. This variable may be modified on the fly. In the case of an INCHAT event, this will
change the text that ends up getting displayed on the screen. In the case of an OUTCHAT
event, it will change the text that is sent to other users.

 It is generally preferable to use OUTCHAT rather than INCHAT event handlers.

The following example shows how to make an effect that occurs whenever you speak
(type) a key word or phrase, by applying an IF statement to CHATSTR. The whole
thing resides in the OUTCHAT handler.

Example

ON OUTCHAT {
{

"applause" SOUND
} CHATSTR “!Thank you!” == IF

}

\ (The "Backslash" Character)

The backslash has a special meaning in Iptscrae; when it appears within a character
string, it indicates that the character immediately following it should be included
within the string literally (i.e., as a printable character). It is most often used to indicate
that a double quote should be printed as part of a string, rather than signifying the end
of it (as it typically would). The backslash can be used with other control characters, as
well as in GREPSTR regular expressions.

Example 1 (a quote within a SAY command)

"The word he said was \"rosebud.\"" SAY

Example 2 (a local whisper in a "sign balloon")

"@200,20\^Note to myself..." WHOME PRIVATEMSG

28 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Event handlers

Events are the basic stimuli of the server, representing all the things your Palace can
“watch for” and respond to. They include significant user actions such as entering and
leaving rooms, clicking on doors and spots, talking and other basic activities, plus a
special type of event called an alarm.

For each event type, there exists an event handler. Event handlers reside within the
SCRIPT... ENDSCRIPT portions of a script file. The name of each event handler
consists of the word ON followed by the name of the event it handles (i.e., ON ENTER,
ON LEAVE, ON SELECT, and others). When an event occurs, the server script file is
consulted to see whether there is a handler for that event in the current room. The
client also checks the user’s Cyborg.ipt file. If any appropriate event handlers are
found, the scripts within them are executed immediately.

Note that not all handlers may be used in all objects; some may be applied only to
doors or spots, others to cyborgs, and some to all three.

ON ALARM

(Doors, Spots, Cyborgs)

An ALARM event occurs in response to the SETALARM command in a script. It can be
used to schedule a periodic event, such as an animation, or to provide a delayed
response. To trigger the following example handler, use the SETALARM command (see
SETALARM on page 51).

Example

ON ALARM {
"I am alarmed!" SAY

}

ON ENTER

(Doors, Spots, Cyborgs)

An ENTER event occurs when a user enters the room. Scripts in this handler can be used
(among other things) to start animations (via SETALARM), initialize user-defined
functions, start room behavior, generate automatic “hello” messages from the entering
user, etc.

Example

ON ENTER {
"I have entered!" SAY

}

The Palace Iptscrae Language Guide 29

Event handlers

ON INCHAT

(Doors, Spots, Cyborgs)

An INCHAT event is triggered in response to an incoming chat message; a better name
for this handler might be ON HEAR. It is generally preferable to use the OUTCHAT handler
instead of this one, because INCHAT events will be triggered by all user speech, user
scripts, and any other "talking spots" in the room (very possibly flooding the server),
whereas OUTCHAT events will only be triggered by users’ deliberate speech. Scripts in
the INCHAT handler can be used to modify the text of the incoming chat message via
use of the CHATSTR variable.

Example

ON INCHAT {
"yes" SOUND

}

NOTE – Want to get killed for flooding your server? Make a spot in your Palace that
does a SAY in the INCHAT handler. Better yet, make two of them in the same room. Then
say something.

ON LEAVE

(Doors, Spots, Cyborgs)

A LEAVE event occurs when a user leaves the room. Scripts in this handler will be
executed in their entirety before the user actually departs.

Example

ON LEAVE {
"I am leaving!" SAY

}

ON LOCK

(Lockable Doors)

A LOCK event occurs when a door becomes locked. The event is sent to the door itself.
Scripts in this handler can be used to add additional behaviors to the door in question.

Example

ON LOCK {
"The door is locked!" SAY

}

30 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

ON MACROn for n=0 to n=9

(Cyborgs)

If the room allows cyborgs, this event runs when a script uses ONMACROn (where n is
between 0 and 9) or the user uses an avatar selection 0-9

ON OUTCHAT

(Doors, Spots, Cyborgs)

An OUTCHAT event is triggered in response to an outgoing chat message (when a user
types something and presses the Return key). Scripts in the OUTCHAT handler can be
used to modify the text of outgoing chat messages via use of the CHATSTR variable. A
good example of an OUTCHAT script is the text message handler in The Moor.

Example

ON OUTCHAT {
{

"Polo!" CHATSTR =
} "Marco" CHATSTR == IF

}

ON SELECT

(Doors, Spots)

A SELECT event occurs whenever a user clicks on a hotspot. Note that unless the
hotspot possesses a DONTMOVEHERE command, the user’s avatar will immediately move
to the location clicked.

Example

ON SELECT {
"I selected the spot!" SAY

}

ON SIGNON

(Cyborgs)

A SIGNON event is sent to each user as they sign on.

Example

ON SIGNON {
"I have signed on!" SAY

}

The Palace Iptscrae Language Guide 31

Commands and functions

ON UNLOCK

(Lockable Doors)

An UNLOCK event occurs when a door becomes unlocked. The event is sent to the door
itself. Scripts in this handler can be used to add additional behaviors to the door in
question.

Example

ON UNLOCK {
"The door is unlocked!" SAY

}

Commands and functions

Now that you know where scripts can be placed and what events they can react to,
you’ll probably want to know what kinds of things you can make them do. You can
add action to your scripts by using the commands and functions described in this
section.

Commands perform actions that directly affect the state of objects in the current room
(users, doors, spots and props). Functions are similar to commands, but their concerns
are data-oriented; a Function always leaves a value (some kind of data) on the top of
the stack, so it can be accessed and manipulated by other commands and Functions.
This is what we mean when we say that a Function “returns” a value: it places this
value on the top of the stack. Most functions perform both "pops" and "pushes" in
doing their job: for instance, the “plus” (+) operator pops the top two values off the
stack, adds them, and pushes the sum onto the stack. When the operation ends there is
one value — not three — on the stack.

For ease of use, the commands and functions have been divided into several
categories, based upon the objects they affect and actions they perform:

• Cyborg Commands directly affect or refer to users, avatars and props. See Cyborg
commands and functions on page 32.

• Spot Commands directly affect or refer to hotspots (both doors and spots). See Spot
commands and functions on page 48.

• Paint Commands deal with the paint tools and painting on the screen. See Paint
commands and functions on page 55.

• Sound Commands deal with WAV or MIDI files and their use. See Sound commands
and functions on page 59.

• Flow Commands affect the logical flow (decision-making processes) of the
program. Flow commands and functions on page 60.

32 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

• General Commands affect data and variables; usually on the stack, and perform
other miscellaneous actions which don’t fit easily into the other categories. See
General commands and functions on page 64.

NOTE – Just because something is called a “cyborg command” doesn’t mean that it can
only be placed in the Cyborg.IPT. On the contrary, most commands will work just fine
in either script file, in any type of object. Rather, the categories refer to the types of
objects or actions that are manipulated by the command; what we might call “the
subject objects.”

The following listings describe all Iptscrae commands and functions.

Cyborg commands and functions

CHAT

"message" CHAT

This command displays the message in a cartoon balloon, as though the user typed it
directly into the Input Box. It is identical to the SAY command.

Example

"This is a sentence." CHAT

CLEARPROPS

CLEARPROPS

This command removes all the props the user is wearing. A synonym is NAKED.

Example

CLEARPROPS

The Palace Iptscrae Language Guide 33

Commands and functions

DOFFPROP

DOFFPROP

This command removes the last prop put on by the user.

Related commands

DONPROP, DROPPROP and REMOVEPROP.

Example

DOFFPROP

DONPROP

propID DONPROP
"propName" DONPROP

This command (in either of its forms) adds a prop to the user’s costume. The prop can
be specified by ID# (preferable) or by Name.

Related commands

DOFFPROP, DROPPROP and REMOVEPROP.

Examples

1280 DONPROP

"BRBSIGN" DONPROP

34 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

DROPPROP

x y DROPPROP

This command takes the last prop user put on and drops it into the floor (making it a
loose prop). x and y specify where it will be dropped.

Related commands

DOFFPROP, DROPPROP and REMOVEPROP.

Example

512 RANDOM tempX =
384 RANDOM tempY =
tempX tempY DROPPROP

GLOBALMSG

"message" GLOBALMSG

This command is available only to users with Operator privileges. It generates a
message that everybody on the server sees. Use it sparingly.

Example

"This is a Global Message." GLOBALMSG

GOTOROOM

roomID GOTOROOM

This command is used by spots to navigate users to another room. You can find out the
roomID by looking at the Room Info window, or by using a ROOMID command.

Example

86 GOTOROOM

The Palace Iptscrae Language Guide 35

Commands and functions

GOTOURL

"urlString" GOTOURL

This command can be used to send users to other Palaces and Internet URLs. If you
use a URL beginning with "palace://" the user will be connected to the Palace site
specified (if possible); otherwise the user’s system will attempt to go there via
whatever application is normally associated with URLs of that type (web browsers,
news readers, FTP utilities, etc.) Same as NETGOTO.

NOTE – If the URL begins with "palace://", it must be the only thing in the script in
order to work with the Macintosh Client or The Palace Viewer.

Examples

"palace://welcome.thepalace.com" GOTOURL
"http://www.thepalace.com" GOTOURL

GOTOURLFRAME

"url" "frame" GOTOURLFRAME

This command can be used to send users to the url passed in the browser frame named
"frame".

NOTE – Frame specification is effective in TPV only. The Macintosh and Windows
clients use the default frame.

Example

"http://www.thepalace.com" "myframe" GOTOURLFRAME

36 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

HASPROP
"propName" HASPROP

propID HASPROP

This function pushes a 1 onto the stack if the user possesses the specified prop;
otherwise it pushes a 0.

Example

{
"I am wearing the Ray Bans" SAY

} {
"I am NOT wearing the Ray Bans" SAY

} "Ray Bans" HASPROP IFELSE

INSPOT

spotID INSPOT

This function pushes a 1 onto the stack if the user’s current location is within the spot
indicated by spotID; otherwise it returns a 0. The following example assumes that the
current room includes a spot with an ID of 1.

Example

{
"I’m in The Spot!" SAY

} {
"I’m not in The Spot!" SAY

} 1 INSPOT IFELSE

ISGOD

ISGOD

This function pushes a 1 onto the stack if the user running the script has owner-level
access, otherwise it pushes a 0.

Example

{
"I am an Owner!" SAY

} {
"I am not an Owner!" SAY

} ISGOD IFELSE

The Palace Iptscrae Language Guide 37

Commands and functions

ISGUEST

ISGUEST

This function pushes a 1 onto the stack if the user has guest access, otherwise it returns
0.

Example

{
"I am a Guest!" SAY

} {
"I am not a Guest!" SAY

} ISGUEST IFELSE

ISWIZARD

ISWIZARD

This function pushes a 1 onto the stack if the user has owner or operator-level access,
otherwise it returns 0.

Example

"I am a operator!" SAY
} {

"I am not a operator!" SAY
} ISWIZARD IFELSE

KILLUSER

userID KILLUSER

This command “kills” (disconnects) the user with the specified userID#. If members
aren't allowed to kill (which is typical of most Palace servers), this command won't
work. In any case guests cannot use it. Note that to get userID it is necessary to use
one of the following commands: ROOMUSER, WHOCHAT, WHOME or WHOTARGET. The
following example shows you how to commit suicide in Iptscrae:

Example

WHOME KILLUSER

38 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

LOCALMSG

"message" LOCALMSG

This command generates a message that only the user executing the script sees. You
can precede the message with @x,y to control its position.

Example

"This is a LOCALMSG. I am the only one who sees it." LOCALMSG

MACRO

number MACRO

This command causes the user to don the specified macro (a "macro" corresponds to an
"avatar" — a group of props that are all worn at the same time). If the user possesses a
saved macro for the number used in the script, their avatar will instantly change to it.
If an ON MACRO script exists in the user's Cyborg.IPT, it will be executed instead of
the prop change.

Example

16 RANDOM MACRO

MOVE

x y MOVE

This command moves the user x,y pixels relative to the current position.

Example 1 (move down and right)

5 5 MOVE

Example 2 (move randomly)

11 RANDOM 5 - tempX =
11 RANDOM 5 - tempY =
tempX tempY MOVE

The Palace Iptscrae Language Guide 39

Commands and functions

NAKED

NAKED

This command removes all of a user’s props. It is the same as CLEARPROPS.

Example

NAKED

NBRROOMUSERS

NBRROOMUSERS

This function returns the number of users currently in the room.

Example

NBRROOMUSERS ITOA tempVar =
"NBRROOMUSERS = " tempVar & "." & SAY

NBRUSERPROPS

NBRUSERPROPS

This function returns the number of props currently worn by the user.

Example

NBRUSERPROPS ITOA tempVar =
"NBRUSERPROPS = " tempVar & "." & SAY

40 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

NETGOTO

"urlString" NETGOTO

This command can be used to access other Palace servers or other Internet URLs. If you
use a "palace://" URL, the user will be signed on to the Palace server indicated (if
possible); otherwise the system will attempt to take the user there by some other
means. Same as GOTOURL.

NOTE – If the URL begins with "palace://", it must be the only thing in the script in
order to work with the Macintosh Client or The Palace Viewer.

Example

"palace://welcome.thepalace.com" NETGOTO
"http://www.thepalace.com" NETGOTO

POSX

POSX

This function returns the user ’s horizontal coordinate.

Example

"My current POSX is " POSX ITOA & SAY

POSY

POSY

This function returns the user ’s vertical coordinate.

Example

"My current POSY is " POSY ITOA & SAY

The Palace Iptscrae Language Guide 41

Commands and functions

PRIVATEMSG

"message" userID PRIVATEMSG

This command generates a private message to another user. Note that to get userID it
is necessary to use one of the following commands: ROOMUSER, WHOCHAT, WHOME or
WHOTARGET.

Example

"This is a PRIVATEMSG. I am whispering to myself." WHOME PRIVATEMSG

REMOVEPROP

propID REMOVEPROP
"propName" REMOVEPROP

This command removes a prop from the user’s costume. The prop can be specified by
name or by propID. The following example removes the “Ray Bans” prop (if the user is
wearing it).

Related commands

DONPROP, DROPPROP and DOFFPROP.

Example

{
"Ray Bans" REMOVEPROP

} {
"First I have to put on the Ray Bans!" SAY

} "Ray Bans" HASPROP IFELSE

42 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

ROOMMSG

"message" ROOMMSG

This command generates a message that everyone in the room sees. Use it sparingly.
You can precede the message with @x,y to control its position.

Example 1

"This is a ROOMMSG. Everyone in this room can see it." ROOMMSG

Example 2

"@10,10 This is a ROOMMSG up in the corner. Isn’t that awesome?"
ROOMMSG

ROOMUSER

number ROOMUSER

Every user on the server has a unique userID that stays the same as long as they
remain connected, but at any given moment they also possess a "room user" number
assigned to them by the room they’re in. This function returns the userID of room user
number in the current room.

Example

WHOME ROOMUSER ITOA tempVar =
"I am currently ROOMUSER number " tempVar & "." & SAY

SAY

"message" SAY

This command displays message as if the user typed it in directly. It is identical to the
CHAT command.

Example 1 (talking)

"I am saying something!" SAY

Example 2 (thinking)

":I am thinking something!" SAY

The Palace Iptscrae Language Guide 43

Commands and functions

Example 3 (shouting)

"!I am shouting something!" SAY

Example 4 (sign)

"^This is a sign!" SAY

Example 5 (positioning)

"@10,10 Now I’m saying something way up here!" SAY

SETCOLOR

number SETCOLOR

This command sets the user’s face color to one of 16 colors. If the "tinted balloon"
preference is checked, this command also contols the color of the word balloon. The
specified number must be an integer from 0 to 15. The possible colors are numbered by
dividing the spectrum into 16 equal steps, as follows:

Example

16 RANDOM SETCOLOR

#0 Red #1 Orange

#2 Orange/Yellow #3 Yellow

#4 Yellow/Green #5 Light Green

#6 Green #7 Green/Cyan

#8 Cyan #9 Light Blue

#10 Medium Blue #11 Dark Blue/Purple

#12 Purple #13 Magenta

#14 Magenta/Pink #15 Pink

44 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

SETFACE

number SETFACE

This commands sets the user’s face to one of the 13 built-in faces (props are not
removed, however). The specified number must be an integer from 0 to 12.s

Example

13 RANDOM SETFACE

SETPOS

x y SETPOS

This command immediately moves the user to position x y in the Viewing Area. x
must be an integer from 0 to 511. y must be an integer from 0 to 383.

Example

10 10 SETPOS

SETPROPS

[propArray] SETPROPS

This command acts like a macro, causing the user to immediately don all props listed
in [propArray]. Props may be listed either by Name or by ID#

Example

["Ray Bans" "daisy" "Wine Bottle"] SETPROPS

Like all arrays, [propArray] must be enclosed in square brackets ([]). Also, prop
names, being strings, must be enclosed in double quotes (").

#0 Eyes Closed (sleeping or
blushing)

#1 Smile

#2 Look Down (nodding) #3 Talking

#4 Wink Left #5 Normal

#6 Wink Right #7 Tilt Left (shaking head)

#8 Look Up (nodding) #9 Tilt Right (shaking head)

#10 Sad #11 Blotto

#12 Angry

The Palace Iptscrae Language Guide 45

Commands and functions

SOUND

"fileName" SOUND

This command plays the sound file filename. Sounds are WAV files, saved without the
.WAV extension, and reside on the client in \Palace\Media\YourPalaceName\Sounds.

Example 1 (play specified sound)

"Applause" SOUND

Example 2 (play random sound)

6 RANDOM tempVar =
["Yes" "No" "Fazein" "Applause" "Boom" "Crunch"] tempVar GET SOUND

SUSRMSG

"message" SUSRMSG

This command generates a message that all owners and operators will see, no matter
where they are on the server. Use it sparingly.

Example

"This is an SUSRMSG from " USERNAME & SUSRMSG

TOPPROP

TOPPROP

This function returns the propID of the last prop the user put on. If the user is "naked"
it returns 0 (zero). The following example shows you how to scatter all your currently-
worn props.

Example

{ 400 RANDOM 300 RANDOM DROPPROP } { TOPPROP } WHILE

46 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

USERNAME

USERNAME

This function returns the user’s User Name as specified in the Preferences dialog. You
can't change a user name from a script.

Example

"Hello, my name is " USERNAME & "!" & SAY

USERPROP

number USERPROP

This function returns the propID of one of the props currently worn by the user.
number is a number from 0 to 8 indicating which prop you want to identify (note that
this refers to the order they were donned in, not necessarily the order they appear in).
You can determine the number of props currently worn by using the NBRUSERPROPS
command, as illustrated in the following example.

Example

NBRUSERPROPS RANDOM whichProp =

whichProp USERPROP ITOA propIdent =

whichProp ITOA " USERPROP = " & propIdent & "." & SAY

WHOCHAT

WHOCHAT

This function returns the userID of the user who invoked an INCHAT event.

Example

WHOCHAT ITOA tempVar =
"The WHOCHAT command returns " tempVar & "." & SAY

WHOME

WHOME

This function returns the user ’s own userID.

The Palace Iptscrae Language Guide 47

Commands and functions

Example

WHOME ITOA tempVar =
"The WHOME command returns " tempVar & "." & SAY

WHONAME

userID WHONAME

This function returns the User Name of the specified user. Note that to get userID it is
necessary to use one of the following commands: ROOMUSER, WHOCHAT, WHOME or
WHOTARGET. The following example causes you to say the name of room user 0 (zero) in
the current room (that’s you, if you’re the only person in the room at the moment!)

Example

0 ROOMUSER WHONAME SAY

WHOPOS

"name" WHOPOS
userID WHOPOS

This function (in either of its forms) returns the current x,y position of the user. Note
that x is placed on the stack before y, which means that y is ready to be retrieved
from the stack first. To reverse their positions so they can be used in their typical order
(X, then Y), use the SWAP function.

Example

WHOME WHOPOS SWAP ITOA tempY = ITOA tempX =
"WHOME WHOPOS returns ’" tempX & "’ ’" & tempY & "’." & SAY

WHOTARGET

WHOTARGET

This function pushes the userID of the person you have selected for private chat (i.e.,
Whisper Mode or ESP) or zero if you have not selected a target.

Example

WHOTARGET USERNAME tempVar =
{

"WHOTARGET USERNAME returns ’" tempVar & "’." & SAY

48 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

} {
"I must select someone in order to use the WHOTARGET Command." SAY

} tempVar <> "" IFELSE

Spot commands and functions

DOORIDX

number DOORIDX

This function returns the ID of the door indicated by number. The following example
causes the user to leave through a random door:

Example

NBRDOORS RANDOM DOORIDX SELECT

Related functions

NBRDOORS, SELECT.

GETSPOTSTATE

spotID GETSPOTSTATE

This function returns the current state of the specified hotspot or door. The following
example uses NBRSPOTS and SPOTIDX as well as GETSPOTSTATE to determine the
state of a random door or spot in the current room.

Example

NBRSPOTS RANDOM tempVar =
"The state of spot number " tempVar ITOA & " (" & tempVar SPOTIDX
SPOTNAME & ") is " & tempVar SPOTIDX GETSPOTSTATE ITOA & SAY

The Palace Iptscrae Language Guide 49

Commands and functions

ISLOCKED

doorID ISLOCKED

This function returns a 1 if the indicated door is locked, otherwise it returns a 0. The
following example uses NBRDOORS and DOORIDX to determine the state of a
randomly-selected door in the current room.

Example

NBRDOORS RANDOM doorNumber =
{

"Door number " doorNumber ITOA & " is locked." SAY
} {

"Door number " doorNumber ITOA & " is unlocked." SAY
} doorNumber DOORIDX ISLOCKED IFELSE

LOCK

doorID LOCK

This command is used by deadbolts (or doorknobs) to lock doors. Its counterpart is the
UNLOCK command. The following example assumes there is a lockable door with an ID
of 1 in the current room.

Example

1 LOCK

ME

ME

When a spot or door is executing the script, this function pushes its ID.

Example

" \"ME SPOTNAME\" returns \"" ME SPOTNAME & "\"." & SAY

50 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

NBRDOORS

NBRDOORS

This function returns the number of doors in the room. This number may be less than
or equal to the number returned by NBRSPOTS (because all doors are spots, but not all
spots are doors).

Related commands

DOORIDX

Example

" \"NBRDOORS\" returns \"" NBRDOORS ITOA & "\"." & SAY

NBRSPOTS

NBRSPOTS

This function returns the number of spots (including doors) in the room.

Example

" \"NBRSPOTS\" returns \"" NBRSPOTS ITOA & "\"." & SAY

SELECT

spotID SELECT

This command “clicks” the spot specified by spotID. If the spot has an ON SELECT
handler, the script will be executed just as though the user had selected it physically.
The following example assumes there is a spot with an ID of 1 in the current room. To
see it work, put an ON SELECT handler in this spot that does something noticeable.

Example

1 SELECT

The Palace Iptscrae Language Guide 51

Commands and functions

SETALARM

futureTicks spotID SETALARM

This command is used to schedule an ALARM event in the future. It can be used to
create animations and other interesting activity. The user’s subjective duration of a
“tick” depends on the speed of both the client and server as well as the network load
at the moment, but is about 1/60th of a second. The following example assumes there
is a spot with an ID of 1 in the current room. To see it work, put an ON ALARM handler
in this spot that does something noticeable (see Handlers earlier in this document).

Example

300 1 SETALARM

SETLOC

x y spotID SETLOC

This command is used to move a spot or door, relative to its current position. It is
functionally equivalent to selecting the spot or door while in authoring mode and
dragging it to the new position. Note that this command is only accessible to owners
and operators; i.e. it will not be executed unless the user is in owners or operator
mode. For this reason, it is much more useful as an authoring command than as a
scripted command. The following example assumes that you are in owners or operator
mode, and that there is a spot with an ID of 1 in the current room.

Example

10 10 1 SETLOC

SETPICLOC

x y spotID SETPICLOC

This command is used to change the x and y offsets of a picture associated with spot
spotID (these are the second and third numbers in the “triplets” appearing between
PICTS and ENDPICTS). Note that only a single picture is affected, corresponding to the
current state of the spot — any pictures associated with other states of the same spot
will remain unchanged. Note also that this command is only accessible to owners and
operators; i.e., it will not be executed unless the user is in owners or operator mode.
For this reason, it is much more useful as an authoring command than as a scripted
command. In fact, the SETPICLOC command provides the only way to change a
picture's offset without editing the server script, and this makes it very useful for "fine-
tuning" the placement of a particularly tricky graphic. The following example assumes
that you are in owners or operator mode, and that there is a spot with an ID of 1 (and
at least one picture) in the current room.

52 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Example

10 10 1 SETPICLOC

To see this command in action, launch the Palace server using the "Mansion" script and
try this simple experiment:

1. Launch your client to access your server.

2. From your client, enter the room called "The Study" and enter Operator mode
(from the Options menu).

3. If the secret bookshelf-door isn’t already open, say "open sesame" to flip the spot’s
state and display the "open" graphic.

4. Type the following command into the Input Box (100 is the ID of the magical door):

/-50 -50 100 SETPICLOC

5. You will see the graphic suddenly jump to a very "wrong" location. Try saying
"close sesame" and "open sesame" a few times; you’ll see that you have
"permanently" changed the position of the graphic associated with the "open" state.

6. To return the graphic to its original position, type:

/54 -21 100 SETPICLOC

SETSPOTSTATE

state spotID SETSPOTSTATE

This command changes the state of a spot for all users currently in the room. For multi-
state hotspots, this can be used to create animation effects. The following example
assumes that the current room contains a spot with an ID of 3 which possesses three
states (0, 1 and 2); the script will advance the spot to the next of these three states by
using an IFELSE command. Try executing it several times in a row.

Example

{
0 3 SETSPOTSTATE

} {
3 GETSPOTSTATE 1 + 3 SETSPOTSTATE

} 2 3 GETSPOTSTATE == IFELSE

The Palace Iptscrae Language Guide 53

Commands and functions

SETSPOTSTATELOCAL

state spotID SETSPOTSTATELOCAL

This command functions just like SETSPOTSTATE, except that only the person executing
the script will actually see the new state occur. Because this command does its work
locally (i.e., on the client computer only), it changes the spot’s state much more quickly
than the non-local version. For this reason, this is the preferred way to do animations
and effects that don’t need to sync up exactly for all users. The following example
assumes that the current room contains a spot with an ID of 3 that possesses three
states (0, 1 and 2). The difference between this example and the preceding one
(SETSPOTSTATE) is that in this case, the user who executes the script will be the only
one who sees the spot change.

Example

{
0 3 SETSPOTSTATELOCAL

} {
3 GETSPOTSTATE 1 + 3 SETSPOTSTATELOCAL

} 2 3 GETSPOTSTATE == IFELSE

SHOWLOOSEPROPS

SHOWLOOSEPROPS

This command creates a list in the Log Window, providing the propID and location of
all loose props in the room. This is useful, for example, if you want to write a script
that automatically places chess pieces on a chess board: In authoring mode,
determining the exact X and Y positions to place all these props by hand would be a
tedious task. Instead of doing this the hard way, you can simply place the props in the
desired positions on the screen, type /SHOWLOOSEPROPS into the client input box, and
copy the listing from the Log Window. This command may also be executed from within
a script. The listing in the Log Window will follow the format shown below:

1009 188 120 ADDLOOSEPROP
1013 108 178 ADDLOOSEPROP
1018 162 185 ADDLOOSEPROP

Example

SHOWLOOSEPROPS

54 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

SPOTDEST

spotID SPOTDEST

This function returns the DEST (destination) of the spot or door specified by spotID.
Note that Normal spots may possess DEST fields, although unlike Passages, they
require a scripted GOTOROOM in the ONSELECT handler to send the user there when
selected. The following example assumes that the current room contains a door with an
ID of 1, for which a DEST has been set:

Example

1 SPOTDEST ITOA tempVar =
"Door number 1 leads to Room number " tempVar & SAY

NOTE – You might find it odd that a normal spot can contain a DEST it doesn’t use,
but consider this: if you place an integer value into a spot’s DEST field (which may
require editing the server script manually), you can then use SPOTDEST to refer to it,
effectively providing a "room-level constant" (and you can do this for each normal spot
in the room). Palace designers are always looking for places to store data without using
globals or incurring too much memory overhead; this is one of ’em.

SPOTNAME

spotID SPOTNAME

This function returns the name of the spot (or door) specified by spotID. The
following example assumes that there is a spot (or door) with an ID of 1 in the current
room, and that it has a name. The following example determines the names of all spots
in the current room, and prints its output to the Log Window.

Example

0 tempVar =
{

"Spot " tempVar ITOA & "’s name is \"" & tempVar SPOTIDX SPOTNAME &
"\"." & LOGMSG

tempVar ++
} { NBRSPOTS tempVar > } WHILE

The Palace Iptscrae Language Guide 55

Commands and functions

SPOTIDX

number SPOTIDX

This function returns the spotID of the spot specified by number. The following
example determines the IDs of all spots in the current room, and prints its output to
the Log Window.

Example

0 tempVar =
{

"Spot " tempVar ITOA & "’s ID is " & tempVar SPOTIDX ITOA & LOGMSG
tempVar ++

} { NBRSPOTS tempVar > } WHILE

UNLOCK

doorID UNLOCK

This command is used by Deadbolts (BOLT commands) to unlock doors. Its counterpart
is the LOCK command. The following example assumes that there is a lockable door
with an ID of 1 in the current room.

Example

1 UNLOCK

Paint commands and functions
 Paint Commands always operate in the foreground layer of the Viewing Area; that is
to say, "in front of" all graphics in the midground layer.

LINE

x1 y1 x2 y2 LINE

This command draws a line from point x1,y1 to point x2,y2. The line is drawn in
the current PENSIZE and PENCOLOR. The following example draws a line from the
upper left corner of the Palace client viewing area to the user who triggered it.

Example

0 0 POSX POSY LINE

56 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

LINETO

x y LINETO

This command draws a line from the current PENPOS to a point x,y away from the
current PENPOS. The line is drawn in the current PENSIZE and PENCOLOR. The
following example draws a diagonal line that goes 100 pixels to the right and 50 pixels
upward, starting from the pen’s current position.

Example

100 -50 LINETO

PAINTCLEAR

PAINTCLEAR

This command erases all painting/drawing from the screen, regardless of who put it
there. You can do the same thing by double-clicking on the Detonator in the Painting
Window.

Example

PAINTCLEAR

PAINTUNDO

PAINTUNDO

This command erases the last painting/drawing command or action performed. You
can do the same thing by clicking once on the Detonator in the Painting Window.

Example

PAINTUNDO

The Palace Iptscrae Language Guide 57

Commands and functions

PENBACK

PENBACK

This command moves the pen to the “back” of the foreground layer: any painting
commands or actions subsequently performed will appear behind all avatars in the
room (but they'll still be in front of any graphics in the midground layer). Any paint
already on the screen is not affected. Note that you can do the same thing by clicking
on the Layerer in the Painting Window.

Example

PENBACK

PENCOLOR

r g b PENCOLOR

This command sets the color of the pen: any painting commands or actions
subsequently performed will appear in the specified color. You can do the same thing
with the Palette in the Painting Window. The three arguments r, g and b represent
the relative amounts of red, green and blue in the color, on a scale of 0 to 255 (where 0
0 0 yields black and 255 255 255 yields white). The following example sets the pen
color randomly.

Example

255 RANDOM tempR =
255 RANDOM tempG =
255 RANDOM tempB =
tempR tempG tempB PENCOLOR

PENFRONT

PENFRONT

This command moves the pen to the “front” of the foreground layer: any painting
commands or actions subsequently performed will appear in front of all avatars in the
room (in the closest possible position to the user's face). Paint already on the screen is
not affected. You can do the same thing by clicking on the Layerer in the Painting
Window.

Example

PENFRONT

58 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

PENPOS

x y PENPOS

This command moves the pen to position x y on the screen, without drawing
anything. The following example moves the pen to the user ’s position.

Example

POSX POSY PENPOS

PENSIZE

number PENSIZE

This command sets the pixel width of all lines drawn by the pen to number (an integer
from 1 to 9): any painting commands or actions subsequently performed will create
lines of this width. Paint already on the screen is not affected. You can do the same
thing with the Line Sizer in the Painting Window. The following example paints a
gradually-widening line across the Viewing Area.

Example

30 150 PENPOS
1 PENSIZE
50 0 LINETO
2 PENSIZE
50 0 LINETO
3 PENSIZE
50 0 LINETO
4 PENSIZE
50 0 LINETO
5 PENSIZE
50 0 LINETO
6 PENSIZE
50 0 LINETO
7 PENSIZE
50 0 LINETO
8 PENSIZE
50 0 LINETO
9 PENSIZE
50 0 LINETO

The Palace Iptscrae Language Guide 59

Commands and functions

PENTO

x y PENTO

This command moves the pen to a position x y relative to the current PENPOS,
without drawing anything. The following example draws a line 100 pixels long, moves
the pen via PENTO, and continues drawing.

Example

0 150 100 150 LINE
50 50 PENTO
100 0 LINETO

Sound commands and functions
Prior to version 2.0 of the Palace client, audio files could not be sent across the
network. For WAV or MIDI files to be heard, they had to exist on the user ’s hard disk,
in the Sounds folder. A few users are still running around with this limitation, and
sounds should therefore be made available via a Web Page, public FTP directory, or
some other means.

Version 2.0 and greater allows clients to receive sounds as downloads from the server.
To be sent out, the audio files in question must be placed in the Pictures folder on the
server’s computer.

MIDIPLAY

"fileName" MIDIPLAY

This command causes the MIDI file "fileName" to be played. The following example
assumes that there is a MIDI file called “testme.mid” in the /Palace/Media/
YourPalaceName/Sounds folder.

Example

"testme.mid" MIDIPLAY

MIDISTOP

MIDISTOP

This command causes the currently-playing MIDI file to immediately stop. (PC only)

Example

MIDISTOP

60 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

SOUND

"fileName" SOUND

This command causes the file "fileName" to be played for all users in the room. It is
functionally identical to typing ")filename" SAY into the Input Box.

Example

"teehee" SOUND

"Song.midi" SOUND

Flow commands and functions

ALARMEXEC

{ atomlist } ticks ALARMEXEC

This command schedules an atomlist to be executed at a pre-specified time (after so
many “ticks” have elapsed). The user ’s subjective duration of a “tick” depends on the
speed of both the client and server as well as network load at the moment, but is
considered to be 1/60th of a second. The following example waits ten seconds before
finishing.

Example

"Don’t you hate..." SAY
{ "waiting?" SAY } 600 ALARMEXEC

BREAK

BREAK

This command breaks out of a WHILE or FOREACH loop. The following example sets
up a FOREACH loop causing a sentence to be spoken one word at a time, but halts after
the fourth word due to a BREAK command.

The Palace Iptscrae Language Guide 61

Commands and functions

Example

0 tempVar =
{

tempStr =
tempVar ++
{

tempStr SAY
} {

BREAK
} 5 tempVar > IFELSE

} ["I" "will" "never" "finish" "speaking" "this" "sentence"] FOREACH

EXEC

atomlist EXEC

This command executes an atomlist. It can be used in combination with the DEF
command (see below) to execute a “user-defined function.” Note that unless the
function was defined in the same handler, it must be made GLOBAL.

Example

{ "Hello world!" SAY } definedFunction =
definedFunction EXEC

EXIT

EXIT

This command stops the currently-running script. It is useful for breaking out of
looping errors that might otherwise flood the server or lock up the client. The
following example bounces you around the screen randomly. It would continue to do
so forever, except for the imbedded EXIT command.

The following script is likely get you killed for flooding if a death penalty exists on the
server where it is executed. It is recommended that you turn the death penalty for
flooding OFF before attempting to use this script.

Example

400 150 SETPOS
{

51 RANDOM 25 - tempX =
51 RANDOM 25 - tempY =
tempX tempY MOVE
{ EXIT } POSX 256 < IF

} { 1 } WHILE

62 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

FOREACH

{ atomlist } [array] FOREACH

This command executes atomlist once for each item in array. Before executing the
atomlist, each item in the array is pushed onto the stack. The atomlist should be
something that pops these items off the stack and does something with them, as the
following example indicates.

Example

{ SAY } ["Ready" "Steady" "Go!"] FOREACH

IF

{ atomlist } condition IF

This command can be used to create a conditional statement: if the condition evaluates
to TRUE (non-zero), atomlist will be executed. If the condition evaluates to FALSE
("0") it will not. Any operator (or logical series of operators) may be used to describe the
condition being checked for (see the Operators section). The following example rolls a
pair of imaginary dice, looking for a lucky total of 7.

Example

6 RANDOM 1 + tempVar =
6 RANDOM 1 + tempVar + tempVar =
"I rolled a " tempVar ITOA & SAY
{ "I’m a winner!" SAY } tempVar 7 == IF

IFELSE

{ trueAtomList } { falseAtomList } condition IFELSE

This command can be used to create mutually-exclusive conditional statements: if the
condition evaluates to TRUE (non-zero), the trueatomlist will be executed.
Otherwise, the falseatomlist will be executed. Warning: a very common Iptscrae
bug is to use IF when you really mean IFELSE. The following example randomly
determines two numbers from 1 to 100 and compares them.

The Palace Iptscrae Language Guide 63

Commands and functions

Example

100 RANDOM 1 + tempVar1 =
100 RANDOM 1 + tempVar2 =
{

tempVar1 ITOA "is less than or equal to " & tempVar2 ITOA & SAY
} {

tempVar1 ITOA "is greater than " & tempVar2 ITOA & SAY
} tempVar1 tempVar2 <= IFELSE

RETURN

This command breaks out of an atomlist.

Example

{
"This line will be executed" SAY
RETURN
"This line will not" SAY

}

SETALARM

futureTicks spotID SETALARM

This command schedules the ALARM event for the spot spotID; this event will occur
futureTicks in the future. A “tick” is 1/60th of a second. The following example
assumes that there is a spot with an ID of 1 in the current room, and that this spot
possesses an ON ALARM handler. When executed, the code will cause the spot’s ON
ALARM handler to be triggered ten seconds later.

Example

600 1 SETALARM

WHILE

{ atomlist } { condition } WHILE

This command creates a loop in which atomlist will continue iterating until
condition evaluates to TRUE (non-zero). Any operator (or logical series of operators)
may be used to describe the condition being checked for. The following example will
continue counting until tempVar equals 5.

64 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Example

{
tempVar 1 + tempVar =
tempVar ITOA SAY

} { tempVar 5 < } WHILE

General commands and functions

; <comment>

; comment

A semicolon (;) at the beginning of a line tells the program to ignore everything up to
the next carriage return; it is used to insert comments into your scripts. Commenting
your code is considered good programming practice in general, and comes in
especially handy when you return to a script you haven’t looked at in a long time.
Note that comments placed outside of the script proper (i.e. outside of the SCRIPT...
ENDSCRIPT block) will not be saved by the server.

Example

"This line will be executed" SAY
; "This line will not" SAY

ADDLOOSEPROP

propID x y ADDLOOSEPROP
"propName" x y ADDLOOSEPROP

This command adds a loose prop to the Viewing Area. The prop can be specified by
propID or by propName. In the first case (propID), you must either know the propID
already or use a command to retrieve it (TOPPROP or USERPROP will accomplish this).
In the second case (propName), remember to place the name of the prop in quotes. Note
that the prop specified must exist in either the client’s propfile or the server ’s propfile;
otherwise the command will have no effect.

Example 1 (by propName)

"halo" 100 200 ADDLOOSEPROP

Example 2 (by propID)

1016 100 200 ADDLOOSEPROP

The Palace Iptscrae Language Guide 65

Commands and functions

Example 3 (duplicating a worn prop)

"halo" DONPROP
TOPPROP 100 200 ADDLOOSEPROP

ARRAY

number ARRAY

This command creates an array containing number elements. This array will contain
zeros when first created. Data may be stored via the PUT command. The following
example creates an empty array of ten elements and names it "myArray."

Example

10 ARRAY myArray =

ATOI

"string" ATOI

This function (“Ascii TO Integer”) converts a character string to a number. Strings –
even numerals spoken as text strings — must be converted to integers before you can
do math with them. The following example causes any integer spoken (all by itself) to
be multiplied by ten before it appears in the user's cartoon balloon.

Related commands

ITOA

Example

{
CHATSTR ATOI yourNumber =
yourNumber 10 * myNumber =
myNumber ITOA CHATSTR =

} CHATSTR "^[0-9]$" SUBSTR == IF

66 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

BEEP

BEEP

This commands causes the system beep sound to be heard on the user’s computer. The
following example causes this sound to be heard whenever the user says "beep" (even
if it’s imbedded in another word, or capitalized).

Example

{
BEEP

} CHATSTR LOWERCASE "beep" SUBSTR == IF

CLEARLOOSEPROPS

CLEARLOOSEPROPS

This command clears all loose props from the room. The following example clears the
room of loose props whenever the user says "be gone" (without the quotes).

Example

{
CLEARLOOSEPROPS

} CHATSTR "be gone" == IF

CLIENTTYPE

CLIENTTYPE

This command pushes "WINDOWS32", "MAC68K", "MACPPC", "TPV", or "unknown"
onto the stack, depending on which client is running the script. The following example
tells the user which client he/she is using whenever the user asks "which client".

Example

{

CLIENTTYPE SAY

} CHATSTR "which client" == IF

The Palace Iptscrae Language Guide 67

Commands and functions

DATETIME

DATETIME

This function returns the number of seconds that have passed since January 1st, 1970
(Pacific Standard Time). Translating this number to a Julian date is left as an exercise
for the reader (it’s tough, but quite do-able).

Example

"The current DATETIME is " DATETIME ITOA & SAY

DEF

{ atomlist } symbol DEF

This command is used to create your own custom functions. Note that symbol must
be declared GLOBAL if you want it to be recognized by any event handlers other than
the one it’s defined in; it will also have to be declared GLOBAL there (i.e., in the other
handlers). As long as you adhere to this rule, your function can be executed in any
room in your Palace.

Example 1 (defined and executed within the same handler)

{
"@50,50! " USERNAME & " has entered the room!" & SAY

} myFunction DEF
myFunction EXEC

Example 2 (defined ON ENTER, executed ON SELECT)

ON ENTER {
myFunction GLOBAL
{

"@50,50! " USERNAME & " is the greatest!" & SAY
} myFunction DEF

}

ON SELECT {
myFunction GLOBAL
myFunction EXEC

}

68 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

DELAY

number DELAY

This command causes a delay affecting all activity on the client — events, alarms,
queued commands and even prop animations — for the duration specified by number.
Delay times are measured in ticks (1/60 of a second) Note that SETALARM and
ALARMEXEC are preferred since they don't lock up all processes on the client, although
use of the DELAY command might be appropriate in a game, or as a penalty for
breaking some house rule. The following example suggests one possible use:

Example

ON ALARM {
foulMouthFlag GLOBAL
{

USERNAME ", you have been flagged for swearing. You have been
sentenced to 30 seconds of dead time. If you persist you will be kicked
off the server." & LOCALMSG

1800 DELAY
} foulMouthFlag 1 == IF

DIMROOM

number DIMROOM

This command allows you to “dim the lights” in the room, decreasing the luminance of
all visible graphics and props. The natural state of a room is 100% lit. By specifying an
integer (number) lower than 100 and higher than 0, you can set the lighting to any
desired percentage. Note that if number equals 100 or 0 (zero), the room will be made
100% lit again. The following example fades the lights down and then brings them
back up again.

Example

{
lightingNow =
lightingNow DIMROOM

} [90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100]
FOREACH

The Palace Iptscrae Language Guide 69

Commands and functions

DUP

DUP

This command duplicates the top element on the stack. The following example shows
an easy way to multiply an expression by itself; in this case, (x + 1) * (x + 1).

Example

x 1 + DUP *

GET

array index GET

This function gets item number index from array. Note that the elements of an array
are numbered from 0 (zero) to (number of elements minus 1). The array may be
specified directly (element by element) or by reference to its symbol (name).

Related commands

PUT

Example 1 (referring to array directly)

["alpha" "beta" "gamma" "delta" "epsilon"] 5 RANDOM GET tempStr =
tempStr SAY

Example 2 (referring to array by its Symbol)

["alpha" "beta" "gamma" "delta" "epsilon"] myArray =
myArray 5 RANDOM GET tempStr =
tempStr SAY

70 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

GLOBAL

symbol GLOBAL

This command declares symbol as a global variable, which allows it to be shared
among event handlers. The GLOBAL command must used in EVERY event handler and
ALARMEXEC in which the global symbol is used, even in the same room. It is good practice
to declare your globals as soon as you enter the handler in which they will be used;
this makes it easy to remember which ones you need and what you were doing.

Example

ON ENTER {
first_variable GLOBAL
other_variable GLOBAL
"Hello" first_variable =
"World" other_variable =
60 ME SETALARM

}
ON ALARM {

first_variable GLOBAL
other_variable GLOBAL
first_variable SAY
other_variable SAY

}

About nested globals. GLOBAL is an executable command. After it is executed, the
variable will operate as a global value for the rest of the script.

For non-programmers, the following examples should make all of this a bit more clear;
compare the level of indentation at which the myGlobal GLOBAL statement appears in
each example.

Example 1 (this works):

{ myGlobal GLOBAL "I rolled a " myGlobal ITOA & SAY } 30 ALARMEXEC
myGlobal GLOBAL
6 RANDOM 1 + myGlobal =

Example 2 (this doesn’t):

{ "I rolled a " myGlobal ITOA & SAY myGlobal GLOBAL } 30 ALARMEXEC
myGlobal GLOBAL
6 RANDOM 1 + myGlobal =

The Palace Iptscrae Language Guide 71

Commands and functions

 GREPSTR

string "pattern" GREPSTR

This function performs a case-sensitive search for the specified pattern within the
specified string, and returns true (1) if the pattern is found. It may be placed in the
INCHAT or OUTCHAT handler to operate directly on CHATSTR. Note that this command
uses UNIX grep-style syntax; i.e., any character matches itself, unless it is one of the
following special characters:

Special GREPSTR Characters

Example 1 (using IF to check for existence of string)

{
"I hate $1" GREPSUB ROOMMSG

} CHATSTR LOWERCASE "^i like (.*)$" GREPSTR == IF

Example 2 (using WHILE to check for all instances of string)

{
"$1darn$2" GREPSUB CHATSTR =

} { CHATSTR LOWERCASE "(.*)damn(.*)" GREPSTR } WHILE

Character Matches

. Any character

\ The character following it

[<set>] One of the characters in the set, for example:
 [aeiou] matches any vowel (except y)
 [A-Za-z] matches any alphabetic character
 [^0-9] matches anything but the characters 0-9

* Any pattern followed by *matches zero or more instances of the
pattern.

+ Same as * except it matches one or more instances of the pattern.

() Used to tag sub-expressions that can be referred to in a GREPSUB
command or subsequently, using the special symbols $1 through
$9.

^ A pattern beginning with ^ must start at the beginning of the line.

$ A pattern ending with $ must match to the end of the line.

72 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

NOTE – These examples use the special Symbols $1 and $2, allowing the GREPSUB
command to use the text picked up by the wildcards (.*) in the GREPSTR command.
Up to nine such symbols may be used in a single GREPSTR-GREPSUB structure ($1
through $9). For more information on regular expressions in general, see Mastering
Regular Expressions by Jeffrey Friedl. Copyright 1997, O’Reilly and Associates

GREPSUB

"replacementPattern" GREPSUB

This function is executed in conjunction with a GREPSTR command: it locates specified
spaces within a string, and fills them with any text that was “captured” by the
GREPSTR. The replacement pattern uses the special Symbols $1 through $9 to refer to
these captured character strings.

Example (the “Elmer Fudd” script from “The Moor”):

{
"$1w$2" GREPSUB CHATSTR =

} { CHATSTR "(.*)[lr]([aeiouy][^ .].*)" GREPSTR } WHILE

IPTVERSION

IPTVERSION

This command pushes the current Iptscrae version number (currently 1) into the stack.
The following example would tell another user which version of Iptscrae you are
currently using.

Example

"I’m currently using Iptscrae version" IPTVERSION ITOA & SAY

The Palace Iptscrae Language Guide 73

Commands and functions

ITOA

ITOA

This function (“Integer TO Ascii”) takes a numeric variable from the top of the stack,
converts it to a character string, and places it back on the stack. Numerals must be
converted to character strings before you can text-based commands (such as SAY) on
them. For instance,

WHOME SAY

fails, since the WHOME function puts an integer (your userID) on the stack, while the
SAY command is looking for a character string. The example below shows how you
can use ITOA to remedy this.

Example

WHOME ITOA SAY

Related commands

ATOI

LAUNCHAPP

appName LAUNCHAPP

This command tells the Palace software to look for the program called appName in the
user's PlugIns folder, and launch it. It is used to launch Palace-compatible games and
other software known as "Palace Plugins." The PalacePresents Viewer, which is
distributed with the Palace User Software client, is a good example. Note that the full
name of the program must be used (including file extensions, if any exist). The full
path does not need to be specified, as this command applies to the Plugins folder only.

Example

ON ENTER {
"PalacePresents Viewer.dll" LAUNCHAPP

}

74 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

LENGTH

array LENGTH

This function returns the number of elements in array. The array may be specified
directly (element by element) or by reference to its symbol (name).

Example 1 (referring to array directly)

["alpha" "beta" "gamma" "delta" "epsilon"] LENGTH ITOA SAY

Example 2 (referring to array by its Symbol)

["alpha" "beta" "gamma" "delta" "epsilon"] myArray =
myArray LENGTH ITOA SAY

LOGMSG

"message" LOGMSG

This command causes message to appear in the user’s Log Window. Like CHAT, SAY and
other message-related commands, it deals with character strings rather than integers.
This command is primarily useful for debugging, since many users keep their Log
Windows closed (guests and new users may be completely unaware that this window
exists at all).

Example

"This is a message in your Log Window." LOGMSG

LOWERCASE

"string" LOWERCASE

This function converts a character string to lowercase.

Example

"I WANT TO SHOUT, BUT I CAN’T!" LOWERCASE SAY

The Palace Iptscrae Language Guide 75

Commands and functions

MOUSEPOS

MOUSEPOS

This function returns the current X (horizontal) and Y (vertical) coordinates of the
cursor. The X coordinate is put on the stack first, then the Y coordinate; they must be
retrieved separately. This means you’ll need two ITOA commands to get the mouse
position, not just one. If you want get them in the traditional order (X, then Y), issue a
SWAP command before getting them from the stack. The example below shows how to
do this, sending the output to the Log Window.

Example

MOUSEPOS SWAP ITOA LOGMSG ITOA LOGMSG

OVER

OVER

This command is the same as 1 PICK. See the PICK command below for a full
description.

PICK

PICK

The command n Pick reaches down n stack items and copies that item to the top of the
stack. O PICK is the same as DUP, and 1 PICK is the same as OVER.

POP

POP

This command pops the top element off the stack and discards it.

Example

"none" "one" "two" "three" "four"
POP POP POP POP
SAY

76 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

PUT

data array index PUT

This command is used to put a data element into an array, in the position indicated
by index. If the data is a string (as opposed to an integer), it must be encased in
double quotes. Note that the elements of an array are numbered from 0 (zero) to
(number of elements minus 1). The following example creates an array of letters, places
the word "foo" in a random position within it, and prints the results in the Log Window.

Related commands

GET

Example

["a" "b" "c" "d" "e"] myArray =
"foo" myArray 5 RANDOM PUT
{ LOGMSG } myArray FOREACH

RANDOM

number RANDOM

This function puts a random integer on the stack, from 0 to (number minus 1). The
following example shows you how to roll a die (i.e., how to generate a random integer
from 1 to 6):

Example

6 RANDOM 1 + tempVar =
"I rolled a " tempVar ITOA & "!" & SAY

ROOMID

ROOMID

This function returns the ID of the current room (as an integer).

Example

"The ID of this room is \"" ROOMID ITOA & ".\"" & SAY

The Palace Iptscrae Language Guide 77

Commands and functions

ROOMNAME

ROOMNAME

This function returns the name of the current room.

Example

"The name of this ROOM is \"" ROOMNAME & ".\"" & SAY

SAYAT

"message" x y SAYAT

This command causes message to appear as though it was spoken from position x,y.
This is also known as "spoofing."

Example

512 RANDOM tempX =
384 RANDOM tempY =
tempX ITOA " by " & tempY ITOA tempStr =
tempStr tempX tempY SAYAT

SERVERNAME

SERVERNAME

This is the name of the server as specified in the Server Preferences dialog. You can’t
change the servername from a script.

Example

"Hello and welcome to " SERVERNAME & "!" & LOCALMSG

STACKDEPTH

STACKDEPTH

This command pushes the number of items on the stack to the top of the stack.

78 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

STATUSMSG

"message" STATUSMSG

This command causes message to be displayed in the status bar (just above the Input
Box) on the Macintosh and Windows clients. On The Palace Viewer, this command
causes message to be displayed in the center of the Grapic window. It can be
annoying; use it sparingly.

Example

"What a cool STATUSMSG!" STATUSMSG

STRINDEX

"str" "sp" -- off

This command pushes the offset of the string "sp" in "str" or pushes -1 if "sp" does
not appear in "str".

STRLEN

"str" -- len

This command pushes the length of the string to the top of the stack.

STRTOATOM

"string" STRTOATOM

This command turns a character string into an executable atomlist.

Example

"WHOME WHONAME SAY" STRTOATOM EXEC

The Palace Iptscrae Language Guide 79

Commands and functions

SUBSTR

string "stringpattern" SUBSTR

This function searches string for stringpattern (not case-sensitive) and returns 1
if it is found; otherwise it returns a 0.

Example

ON OUTCHAT {
CHATSTR LOWERCASE tempStr =
{

"The letters ae appeared in that sentence." CHATSTR =
} {

"The letters ae did not appear in that sentence." CHATSTR =
} tempStr "ae" SUBSTR IFELSE

}

SUBSTRING

"str" off len -- "f"

This command pushes the substring of "str" at offset off for length len. Negative
values of len mean the rest of the string at offset off. Negative values of offset are an error.
The example below says "I like roses".

Example

"I like violets" 0 7 SUBSTRING "roses" & SAY

SWAP

SWAP

This command swaps the top two elements on the stack.

Example

MOUSEPOS
 "The current MOUSEPOS is " ITOA & " (Y) " & ITOA & "(X)." & SAY
MOUSEPOS
 "But if I do a SWAP I get " SWAP ITOA & " (X) followed by " & ITOA &
"(Y)." & SAY

80 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

TICKS

TICKS

This function returns the current time (on the client) in ticks. The user ’s subjective
duration of a “tick” depends on the speed of both the client and server as well as the
network load at the moment, but is considered to be about 1/60th of a second.

Example

"Current TICKS = " TICKS ITOA & "." & SAY

TOPTYPE

TOPTYPE

This command pushes a number indicating the type of the top item on the stack (the
top item remains on the stack). The codes are

0 - Internal Error/unknown/stack empty
1 - number
2 - symbol (variable name)
3 - AtomList
4 - String
5 - ArrayMark (a [character)
6 - Array

UPPERCASE

"string" UPPERCASE

This function converts string to uppercase. The following example causes everything
to be spoken that way (in Cyborg.IPT it will operate on everything the user says; in a
room script it will operate on everything said by anyone in the room).

Example

ON OUTCHAT {
CHATSTR UPPERCASE CHATSTR =

}

VARTYPE

VARTYPE

This command is like TOPTYPE, unless the top item on the stack is a symbol (variable).
If the top item is a symbol, the type of the current value of the variable is pushed. For
variable types, see TOPTYPE on page 80

The Palace Iptscrae Language Guide 81

Operators

WHOPOS

"userName" WHOPOS
userID WHOPOS

This function (in either of its forms) returns the x,y position of the user specified. The
following example causes the user to speak his/her coordinates.

Example

WHOME WHOPOS
ITOA tempY = ITOA tempX =
"My current WHOPOS is " tempX & " by " & tempY & "." & SAY

Operators

Operators are functions that perform traditional mathematical and logical operations.
If you want to add, subtract, multiply, divide, or perform higher math tricks, you’ll
need these. You’ll also need to use operators for setting and comparing the values of
symbols and other data; the most commonly-used operators are “equal” (==) and “let
equal” (=). All operators make use of the stack, where they deposit the results of their
calculations.

Standard Operators
Standard operators allow you to perform all basic mathematical operations in RPN
format. This section describes the syntax and use of all standard operators.

Each of the following examples is preceded by the equivalent statement in infix format
(in parentheses).

valueA valueB +

Adds the two values and pushes the result onto the stack. If the two values are strings,
this operator concatenates the two strings and pushes the result onto the stack.

Example (2 + 3)

2 3 +

valueA valueB -

Subtracts valueb from valuea and pushes the result onto the stack.

82 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Example (3 - 2)

3 2 -

valueA valueB *

Multiplies the two values and pushes the result onto the stack.

Example (2 * 3)

2 3 *

valueA valueB /

Divides valueA by valueB and pushes the (integer) result onto the stack. The
remainder is discarded (e.g., the example below yields a result of “1”).

Example (3 / 2 , discard remainder)

3 2 /

valueA valueB %

Divides valuea by valueb and pushes the remainder (modulo) onto the stack. The
result itself is discarded (e.g., the example below yields a result of “5”).

Example (3 / 2 , keep remainder only)

3 2 %

value value ==

Pushes 1 onto the stack if the two values are equal, 0 otherwise. If the two values are
strings, this operator does a case-insensitive string comparison. The example below
returns 0 (false).

Example (2 = 3)

2 3 ==

The Palace Iptscrae Language Guide 83

Operators

value value !=
value value <>

These two operators are synonymous. They push 1 onto the stack if the two specified
values are not equal, otherwise they return 0. The examples below both return 1
(true). Values specified for this function may be either integers or strings. These
operators are case-insensitive when comparing strings.

Example 1 (2 <> 3)

2 3 <>

Example 2 ("a" != "b")

"a""b" !=

valueA valueB <

Pushes 1 onto the stack if valueA is less than valueB; otherwise it returns a 0. Values
specified for this function may be either integers or strings. This operator is case-
insensitive when comparing strings. The example below returns a 1 (true).

Example (2 < 3)

2 3 <

valueA valueB >

Pushes 1 onto the stack if valueA is greater than valueB; otherwise it returns a 0.
Values specified for this function may be either integers or strings. This operator is
case-insensitive when comparing strings. The example below returns a 0 (false).

Example (2 > 3)

2 3 >

valueA valueB <=

Pushes 1 onto the stack if valueA is less than or equal to valueB; otherwise it returns
a 0. Values specified for this function may be either integers or strings. This operator is
case-insensitive when comparing strings. The example below returns a 1 (true).

Example (2 <= 3)

2 3 <=

84 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

valueA valueB >=

Pushes 1 onto the stack if valueA is greater than or equal to valueB; otherwise it
returns a 0. Values specified for this function may be either integers or strings. This
operator is case-insensitive when comparing strings. The example below returns a 0
(false).

Example (2 >= 3)

2 3 >=

valueA valueB AND

Pushes 1 onto the stack if the two values are both true (non-zero), otherwise it returns
a 0. The example below returns a 0 (false).

Example (0 AND 1)

0 1 AND

valueA valueB OR

Pushes 1 onto the stack if either of the two values is true (non-zero), otherwise it
returns a 0. The example below returns a 1 (true).

Example (0 OR 1)

0 1 OR

value NOT
value !

These two operators are synonymous. They push the logical inverse of value onto the
stack (e.g., 1 if value is equal to zero, 0 otherwise). The NOT of 0 is 1. The NOT of 1 (or
any non-zero integer) is 0.

Example (NOT 1)

1 NOT

The Palace Iptscrae Language Guide 85

Operators

value SINE

Pushes the trigonometric sine of value multiplied by 1000. Remeber that value is
in degrees.

Example (sine 30)

30 SINE ITOA SAY

value COSINE

Pushes the trigonometric cosine ofvalue multiplied by 1000. Remember that value
is in degrees.

Example (cosine 30)

30 COSINE ITOA SAY

value TANGENT

Pushes the trigonometric tangent of value multiplied by 1000. Remember that
value is in degrees.

Example (tangent 45)

45 TANGENT ITOA SAY

value SQUAREROOT

Pushes the integer part for the square root of value. The folowing example
displays the message "4".

Example (squareroot 20)

20 SQUAREROOT ITOA SAY

string1 string2 &

Concatenates string1 and string2, and pushes the result onto the stack. The example
below creates a complete sentence out of two parts.

Example (“Are we having fun yet?”)

"Are we " "having fun yet?" &

86 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Assignment Operators
Assignment operators are shortcuts for commonly-used sets of functions. For example,
to add 4 to X, you could say:

x 4 + x =

This works just fine (“take X and 4 and add them, and then let X equal that”), but
using the += assignment operator is easier, because it allows you to combine the
addition and the let equal operations into a single function that does exactly the same
thing:

4 x +=

Assignment operators exist for all basic math operations (addition, subtraction,
multiplication, integer and modulo division), and for the common operations of
incrementing and decrementing (adding or subtracting 1). So instead of saying

x 1 + x =

you can say

x ++

The following entries explain the syntax and effects of all the assignment operators.

value symbol +=

Adds value to symbol and assigns the total to symbol.

Example (let x = x + 3)

3 x +=

 In this operation, you may also specify a string as the value. In this case the operation
appends the string "a" to the string variable x, then assigns the result to x.

Example (let x=x+"a")

"a" x +=

The Palace Iptscrae Language Guide 87

Operators

value symbol -=

Subtracts value from symbol and assigns the total to symbol.

Example (let x = x - 3)

3 x -=

value symbol *=

Multiplies value by symbol and assigns the total to symbol.

Example (let x = x * 3)

3 x *=

value symbol /=

Divides symbol by value and assigns the total (integer) to symbol.

Example (let x = x / 3, rounded down)

3 x /=

value symbol %=

Divides symbol by value and assigns the integer remainder (modulo) to symbol.

Example (let x = the remainder of x / 3)

3 x %=

symbol ++

Adds 1 to the value of symbol.

Example (let x = x + 1)

x ++

symbol --

Subtracts 1 from the value of symbol.

88 The Palace Iptscrae Language Guide

2 Iptscrae Language Reference

Example (let x = x - 1)

x --

The Palace Iptscrae Language Guide 89

3 Quick Reference

The following table is a brief summary of the Iptscrae commands and their meanings.

Word Stack Synopsis

! a -- bool Pushes 1 if a is zero, else 0

!= a b -- bool Pushes 1 if a is zero, else 0

-- Rest of line is a comment

% a b -- m Pushes the remainder
(modulus) of a/b

%= v sym -- Divides contents of sym by v
and stores remainder in sym

& "a" "b" -- "ab" Pushes the concatenation of a
and b

* a b -- p Pushes the product of a*b

*= v sym -- Multiplies v by the contents of
sym and stores result in sym

+ a b -- s Pushes the sum of a+b

+ "a" "b" -- "ab" Pushes the concatenation of a
and b

++ sym -- Adds 1 to the contents of sym
and stores result in sym

+= v sym -- Adds v to the contents of sym
and stores result in sym

+= "s" sym -- Appends "s" to the string value
of sym and stores result in sym

- a b -- d Pushes the difference a-b

90 The Palace Iptscrae Language Guide

3 Quick Reference

-- sym -- Subtracts 1 from the contents of
sym and stores result in sym

-= v sym -- Subtracts v from the contents of
sym and stores result in sym

/ a b -- id Pushes the integer dividend of
a/b

/= v sym -- Divides contents of sym by v
and stores the result in sym

; -- Rest of line is a comment

< a b -- bool Pushes 1 if a less than b, else 0

< "a" "b" -- bool Pushes 1 if a less than b, else 0

<= a b -- bool Pushes 1 if a less than or equal
b, else 0

<= "a" "b" -- bool Pushes 1 if a less than or equal
b, else 0

<> a b -- bool Pushes 1 if a not equal b, else 0

<> "a" "b" -- bool Pushes 1 if a not equal b, else 0

= v sym -- Stores v in location sym

== a b -- bool Pushes 1 if a equals b, else 0

== "a" "b" -- bool Pushes 1 if a equals b, else 0

> a b -- bool Pushes 1 if a greater than b, else
0

> "a" "b" -- bool Pushes 1 if a greater than b, else
0

>= a b -- bool Pushes 1 if a greater than or
equal b, else 0

>= "a" "b" -- bool Pushes 1 if a greater than or
equal b, else 0

ADDLOOSEPROP propID x y -- Place propID at x,y

ADDLOOSEPROP "name" x y -- Place prop name at x,y

ALARMEXEC {al} ticks -- Run atomlist al after ticks 1/60
seconds

AND a b -- bool Pushes 1 if both a and b are
non-zero

ARRAY n -- [ar] Allocate array ar of n elements

ATOI "str" -- n Converts str to an integer or
zero

BEEP -- Sound system beep

Word Stack Synopsis

The Palace Iptscrae Language Guide 91

BREAK -- Exit from a WHILE or
FOREACH loop

CHAT deprecated, use SAY

CLEARLOOSEPROPS -- Clear all loose props in room

CLEARPROPS deprecated, use NAKED

CLIENTTYPE -- "type" Pushes the type of the client,
e.g. "TPV"

COSINE degrees -- sin Pushes cosine(degrees)*1000

DATETIME -- t Pushes seconds since 1/1/1970

DEF {al} sym -- Define atomlist al as symbol
sym

DELAY n -- Stop client for n seconds

DEST -- roomID Pushes destination roomID of
the ME door or 0 for Cyborg

DIMROOM n -- Dim room to n% of fully lit

DOFFPROP -- Removes last-worn prop

DONPROP propID -- Add prop propID

DONPROP "name" -- Add prop name

DOORIDX n -- doorID Pushes doorID of door number
n

DROPPROP x y -- Put last-worn prop at x,y

DUP n -- n n Duplicate top of stack

EXEC {al} -- Execute atomlist al

EXIT -- Stop the currently executing
script

FOREACH {al} [a] -- Run al for each element of a

GET [a] n -- v Pushes element n from array a
onto stack

GETSPOTSTATE spotID -- n Pushes the state n of spotID

GLOBAL sym -- Declares symbol sym to be
global scope

GLOBALMSG "msg" -- Sends msg to everyone on the
server

GOTOROOM roomID -- Moves user to room roomID

GOTOURL "url" -- Moves user or browser to url

GOTOURLFRAME "url" "frame" -- Moves user or browser to url

Word Stack Synopsis

92 The Palace Iptscrae Language Guide

3 Quick Reference

GREPSTR "s" "p" -- bool Greps s for pattern p, pushes 1
if found else 0

GREPSUB "rep" -- "s" Replaces values in rep from
GREPSTR and pushes result

HASPROP propID -- bool Pushes 1 if user has prop, else 0

HASPROP "name" -- bool Pushes 1 if user has prop, else 0

ID -- id Pushes spotID/doorID
executing script or 0 for Cyborg

IF {al} bool -- Run al if bool is not zero

IFELSE {tal} {fal} bool -- If bool not zero run tal,
otherwise fal

INSPOT spotID -- bool Pushes 1 if user in within spot
spotID, else 0

IPTVERSION -- ver Pushes the version of the
Iptscrae language supported

ISGOD -- bool Pushes 1 if user is an owner,
else 0

ISGUEST -- bool Pushes 1 if user is guest, else 0

ISLOCKED doorID -- bool Pushes 1 if doorID is locked

ISWIZARD -- bool Pushes 1 if user is an operator
or owner, else 0

ITOA n -- "S" Converts n to a string

KILLUSER userID -- Forces user userID off server

LENGTH [a] -- n Pushes the number of elements
in a

LINE x1 y1 x2 y2 -- Draws from absolute x1,y1 to
x2,y2

LINETO x y -- Draws from penpos relative x,y

LOCALMSG "msg" -- Sends msg to user running
script (only)

LOCK doorID -- Locks doorID

LOGMSG "msg" -- Puts msg in client log

LOWERCASE "S" -- "s" Converts upper case in S to
lower case

MACRO number -- Runs user’s avatar macro
number

ME -- id Pushes spotID/doorID
executing script or 0 for Cyborg

Word Stack Synopsis

The Palace Iptscrae Language Guide 93

MIDIPLAY "fn" -- Plays MIDI file fn.

MIDISTOP -- Stops the currently playing
MIDI

MOUSEPOS -- x y Pushes the current mouse
x,y

MOVE x y -- Moves the user relative x,y from
current position

NAKED -- Clears all props from user

NBRDOORS -- n Pushes number of doors in
room

NBRROOMUSERS -- n Pushes number of users in room

NBRSPOTS -- n Pushes number of spots in room

NBRUSERPROPS -- n Pushes number of props being
worn

NETGOTO "url" -- same as GOTOURL

NOT a -- bool Pushes 1 if a is zero, else 0

OR a b -- bool Pushes 1 if either a or b is non-
zero

OVER --item Pushes a copy of the next to top
of the stack

PAINTCLEAR -- Clears all painting

PAINTUNDO -- Erases last painting command

PENBACK -- Moves pen behind avatars

PENCOLOR r g b -- Sets pen to red/green/blue

PENFRONT -- Moves pen in front of avatars

PENPOS x y -- Moves pen to x,y w/o drawing

PENSIZE n -- Sets size of pen to n (1-9)

PENTO x y -- Moves pen to relative x,y w/o
drawing

PICK n -- item Pushes a copy of the item n
down on the stack

POP n -- Removes top stack element

POSX -- x Pushes user’s X coordinate

POSY -- y Pushes user’s Y coordinate

PUT d [a] n -- Stores d in element n of array a

PRIVATEMSG "msg" userID -- Sends private msg to userID

Word Stack Synopsis

94 The Palace Iptscrae Language Guide

3 Quick Reference

RANDOM n -- v Pushes a random number
between 0 and n-1

REMOVEPROP propID -- Removes prop propID

REMOVEPROP "name" -- Removes prop name

RETURN -- Break out of an atomlist

ROOMID -- n Pushes the current roomID

ROOMMSG "msg" -- Sends msg to everyone in the
room

ROOMNAME -- "name" Pushes the current room name

ROOMUSER n -- userID Pushes userID of nth user in
room

SAY "msg" -- Makes user speak msg

SAYAT "msg" x y -- Cause msg to appear at x,y

SELECT spotID -- Causes ON SELECT handler of
spotID to run

SERVERNAME -- "name" Pushes the current server name

SETALARM ticks spotID -- Runs ON ALARM for spotID in
ticks time

SETCOLOR n -- Sets roundhead to color 0-15

SETFACE n -- Sets roundhead expression to 0-
12

SETLOC x y spotID -- Moves spotID to x,y if god/wiz

SETPICLOC x y spotID -- Moves current state pic for
spotID relative x,y if wiz/god

SETPOS x y -- Moves user to absolute x,y

SETPROPS [props] -- Causes user to wear props

SETSPOTSTATE n spotID -- Sets state of spotID to n for all
in room

SETSPOTSTATELOCAL n spotID -- Sets state of spotID to n for user
only

SHOWLOOSEPROPS -- Lists loose props locations in
log

SINE degrees -- sin Pushes sine(degrees)*1000

SOUND "fn" -- Plays sound fn

SPOTDEST spotID -- n Pushes room number spot leads
to

SPOTNAME spotID -- "name" Pushes name of spot spotID

Word Stack Synopsis

The Palace Iptscrae Language Guide 95

SPOTIDX n -- spotID Returns ID of the nth spot in
room

SQUAREROOT n -- sqrt Pushes the square root of n

STACKDEPTH -- n Pushes the number of items on
the stack

STATUSMSG "msg" -- Puts msg in client status
window

STRINDEX "str" "sp" -- off Pushes the offset of sp in str or -
1

STRLEN "str" -- len Pushes the length of str

STRTOATOM "str" -- {al} Compiles str into atomlist

SUBSTR "str" "sp" -- bool Search str for sp, push 1 if
found, else 0. Case
independent.

SUBSTRING "str" off len -- "f" Pushes the substring of str at
offset off for length len

SUSRMSG "msg" -- Sends msg to owner/operator
via page

SWAP a b -- b a Swap top two stack elements

TANGENT degrees -- sin Pushes tangent(degrees)*1000

TICKS -- tick Push current client time in 1/60
seconds

TOPPROP -- propID Pushes the propID of the top
prop

TOPTYPE -- type Pushes the type of the top item
on the stack without removing
it. Types are: 0 - Error/
unknown/stack empty, 1 -
number, 2 - variable, 3 -
AtomList, 4 - String, 5 -
ArrayMark, 6 - Array

UNLOCK doorID -- Unlocks door doorID

UPPERCASE "str" -- "STR" Converts lower case str letters
to upper case

USERID -- userID Pushes my userID

USERNAME -- "name" Pushes the user’s screen name

USERPROP n -- propID Pushes ID of the nth worn prop

VARTYPE -- type Like TOPTYPE, but if the top
item is a variable pushes the
type of it’s value

Word Stack Synopsis

96 The Palace Iptscrae Language Guide

3 Quick Reference

WHILE {al} {test} -- Runs al as long as test is non-
zero

WHOCHAT -- userID Pushes userID in INCHAT
handler

WHOME -- userID Pushes my userID

WHONAME userID -- "name" Pushes screen name of userID

WHOPOS userID -- x y Pushes x,y of user userID

WHOPOS "name" -- x y Pushes x,y of user name

WHOTARGET -- userID Pushes userID of whisper/esp
target

Word Stack Synopsis

The Palace Iptscrae Language Guide 97

 A Adding Machine
Exercise

The following exercise provides a step-by-step look at the creation of a script called
“Adding Machine,” which performs addition problems. With this script in place,
whenever you type in something like “673 plus 897” your avatar will say “673 plus 897
equals 1570”, and at last your parents will see the point behind all that tuition…

The Adding Machine script will sit in the OUTCHAT handler of some spot or cyborg,
waiting to hear the magic word “plus” in a CHATSTR. Since most of our utterances
won’t include this word, we can tell right away that the active part of our script will
have to be placed within an IF command:

ON OUTCHAT {
<the active part of the script>
} CHATSTR “^(.*) plus (.*)$” GREPSTR IF

The two wildcards in the above sentence – these things: (.*) – tell GREPSTR to grab
everything spoken in their places (i.e., outside of the blank spaces surrounding the
word “plus”). GREPSTR then saves them. Thanks to this function, we can now use a
GREPSUB command to get them back, and assign them to the special symbols $1 and
$2 as you will see in the active part of our script, which we can now turn to.

Since $1 and $2 are strings, we need to convert them to integers before we can do
math with them. But because we’re going to want their string values later (when we
speak the answer), we’ll create a couple new symbols, and convert those into numbers
using the ATOI command:

"$1" GREPSUB FIRSTNUMBER =
"$2" GREPSUB SECONDNUMBER =
FIRSTNUMBER ATOI FIRSTNUMBER =
SECONDNUMBER ATOI SECONDNUMBER =

So far so good. FIRSTNUMBER and SECONDNUMBER are now symbols corresponding to
the integer values of these numbers, while $1 and $2 still store the string versions
(note that we had to use GREPSUB to get at these values). Now that we have our
integers, we can do the addition operation itself, sending our output to a third symbol
we’ll call “TOTAL”:

98 The Palace Iptscrae Language Guide

FIRSTNUMBER SECONDNUMBER + TOTAL =

As you’ll see in the following paragraphs, the first part of this line (“FIRSTNUMBER
SECONDNUMBER +”) uses the + operator to put the sum we need onto the stack. The
remaining part (“TOTAL =”) grabs this number and assigns it to a symbol. Now we
have TOTAL, but it’s an integer! Before we can speak it out loud, we have to change it
into a character string with the ITOA command:

TOTAL ITOA TOTAL =

At last we’re ready to speak. We’ll need to use another GREPSUB command to replace
$1 and $2 just as before, then we’ll slap a simple sentence together with a couple &
operators (see below) and stick our TOTAL onto the end of that sentence. Finally we’ll
replace the original CHATSTR with this whole contraption, so that no one will ever see
the original text that triggered our script. Here’s the magical line that performs all that
trickery:

"$1 plus $2" GREPSUB " equals " & TOTAL & CHATSTR =

That’s it! When you put it all together, you get a nifty little script that can easily be
modified to perform any mathematical operation.

; “ADDING MACHINE” script

; Put this in your OUTCHAT handler

{

"$1" GREPSUB FIRSTNUMBER =

"$2" GREPSUB SECONDNUMBER =

FIRSTNUMBER ATOI FIRSTNUMBER =

SECONDNUMBER ATOI SECONDNUMBER =

FIRSTNUMBER SECONDNUMBER + TOTAL =

TOTAL ITOA TOTAL =

"$1 plus $2" GREPSUB " equals " & TOTAL & CHATSTR =

} CHATSTR "^(.*) plus (.*)$" GREPSTR IF

The Adding Machine Script

Congratulations! If you’ve performed this exercise carefully and have made liberal use
of the Language Reference section, you’re probably beginning to get a feel for the
language and its unusual ways. You might even be getting very specific ideas about
what you’d like to do with it, and how it might work. Are the words “handler” and
“atomlist” actually making sense to you? Are you feeling at ease with such backward-
looking formulae as "2 3 + total ="?

If you’ve reached that point, you just might want to set aside some time and
brainstorm out a full design; you’re ready to become one with the Iptscrae, and enter
the weird world of the Palace owners. That’s right — you can now say that you’re
about as advanced an Iptscrae programmer as anyone — so get out there and do it!

And don’t forget to invite us to your grand opening!

The Palace Iptscrae Language Guide 99

 B Code Limitations

This section describes the current Iptscrae implementation limits. No matter how
cleverly you assign variable names and swap graphic elements, there are some data
handling boundaries hard-coded into the software. In general, The Palace Viewer
version of Iptscrae is limited only by the memory available in the browser, so these
limits only apply to The Palace User Software clients for Windows and Macintosh.
Note that client and server limites may override those noted below.

• The maximum length of a string generated by GREPSUB is 16384 bytes.

• The maximum length of a compiled GREPSTR regular expression is 1024 bytes.

• The maximum length of a compound string (one created by concatenation or
SUBSTRING) is limited only by client storage.

• The maximum number of variables in a single handler is 64.

• The maximum number of nested AtomLists (IF, WHILE, EXEC etc.) is 64.

• The maximum number of alarms that can be queued at one time is 64.

• The maximum number of data items that can be held on the stack is 256.

• The range of spot states is -32768 to 32767.

• The maximum number of array elements is 256.

• The maximum number of global variables is limited only by client storage.

Of all the above limitations, the one you'll really want to look out for is the stack limit -
- if more than 256 data items get placed on the stack, some of them will “fall off,”
becoming lost forever. In general, however, these code limitations really shouldn't be
too much of a problem for you -- unless the goal is to do truly complex, site-wide
programming (like tracking the states of multiple users and objects from room to room,
for instance). Although they require great determination and programming fluency,
such tasks are indeed possible in Iptscrae -- and are left as exercises for the reader.

100 The Palace Iptscrae Language Guide

The Palace Iptscrae Language Guide 101

 C The Palace Client
Plugin API

The Palace client software has an open architecture that makes it possible for other
programs, such as games, to plug-in. If you’re interested in finding out more in joining
the developer’s program, please go the Partner’s page on The Palace website
(www.thepalace.com).

102 The Palace Iptscrae Language Guide

The Palace Iptscrae Language Guide 103

Index

Symbols
64

(The "Backslash" Character) 27

A
ADDLOOSEPROP 64
alarm 28
ALARMEXEC 60
and 16
ARRAY 65
ARTIST 19, 21
assignment operators 86
ATOI 65
atomlists 16
authoring mode 13

B
backslash character 27
BEEP 66
BREAK 60

C
CHAT 32
CHATSTR 27
CLEARLOOSEPROPS 66
CLEARPROPS 32
CLIENTTYPE 66
commands 31
comments 64
cyborg commands and functions 32

D
DATETIME 67
DEF 67
DELAY 68
Demarcation Keywords 17
DIMROOM 68
DOFFPROP 33
dommands 16
DONPROP 33
DOORIDX 48
doors 16
DROPPROP 34
DUP 69

E
editing script files 14
ENDPICTS 24
ENDPICTURE 21
ENDSCRIPT 24
event handlers 16
events 28
EXEC 61
EXIT 61

F
flow commands and functions 60
FOREACH 62
functions 31

G
General commands and functions 64
GET 69
GETSPOTSTATE 48
GLOBAL 70
GLOBALMSG 34
GOTOROOM 34
GOTOURL 35
GOTOURLFRAME 35
GREPSTR 71
GREPSUB 72

H
handler 28
HASPROP 36
HIDDEN 19, 20

I
ID 19, 23
IF 62
IFELSE 62
infix word ordering 10
INSPOT 36
Iptscrae

code limitations 99
definition 9
how to run 11
in ASCII 14
in authoring mode 13
script files 14
scripting window 14
slash commands 12

IPTVERSION 72
ISGOD 36
ISGUEST 37
ISLOCKED 49
ISWIZARD 37
ITOA 73

K
keyword 17
KILLUSER 37

L
LAUNCHAPP 73
LENGTH 74
LINE 55
LINETO 56
LOCALMSG 38
LOCK 49

Index

104 The Palace Iptscrae Language Guide

LOGMSG 74
LOWERCASE 74

M
MACRO 38
ME 49
MIDIPLAY 59
MIDISTOP 59
MOUSEPOS 75
MOVE 38

N
NAKED 39
NAME 21, 23
NAME, room 19
NBRDOORS 50
NBRROOMUSERS 39
NBRSPOTS 50
NBRUSERPROPS 39
NETGOTO 40
NOCYBORGS 19, 20
NOGUESTS 19, 20
NOPAINTING 19, 20

O
ON ALARM 28
ON ENTER 28
ON INCHAT 29
ON LEAVE 29
ON LOCK 29
ON MACRON 30
ON OUTCHAT 30
ON SELECT 30
ON SIGNON 30
ON UNLOCK 31
Operators 81
OUTLINE 23
OVER 75

P
paint commands and functions 55
PAINTCLEAR 56
PAINTUNDO 56
PENBACK 57
PENCOLOR 57
PENFRONT 57
PENPOS 58
PENSIZE 58
PENTO 59
PICK 75
PICT 19, 21
PICTS 24
PICTURE 19, 21
POP 75
postfix word ordering 10
POSX 40
POSY 40
PRIVATE 19, 20
PRIVATEMSG 41
PUT 76

R
RANDOM 76
REMOVEPROP 41
RETURN 63
Reverse Polish Notation 10
ROOM

data block 19
ROOMID 76
ROOMMSG 42
ROOMNAME 77
rooms

specifying data 19
ROOMUSER 42
routine 16

S
SAY 42
SAYAT 77
SCRIPT 24
script

definition 16
script file

anatomy 15
script files 14
scripting window 14
SELECT 50
SERVERNAME 77
SETALARM 51, 63
SETCOLOR 43
SETFACE 44
SETLOC 51
SETPICLOC 51
SETPOS 44
SETPROPS 44
SETSPOTSTATE 52
SETSPOTSTATELOCAL 53
SHOWLOOSEPROPS 53
SOUND 45, 60
sound commands and functions 59
spot 23

specify data 23
Spot commands and functions 48
SPOTDEST 54
SPOTIDX 55
SPOTNAME 54
spots 16
stack

definition 11
stack limit 99
STACKDEPTH 77
STATUSMSG 78
STRINDEX 78
string1 string2 & 85
STRLEN 78
STRTOATOM 78
subroutine 16
SUBSTR 79
SUBSTRING 79
SUSRMSG 45
SWAP 79
symbol -- 87
symbol ++ 87

The Palace Iptscrae Language Guide 105

Index

T
TICKS 80
TOPPROP 45
TOPTYPE 80
TRANSCOLOR 22

U
UNLOCK 55
UPPERCASE 80
USERNAME 46
USERPROP 46

V
value COSINE 85
value NOT 84
value SINE 85
value SQUAREROOT 85
value symbol %= 87
value symbol *= 87
value symbol += 86
value symbol /= 87
value symbol -= 87
value TANGENT 85
value value 83
value value != 83
value value == 82
valueA valueB 83, 83
valueA valueB - 81
valueA valueB % 82
valueA valueB * 82
valueA valueB + 81
valueA valueB / 82
valueA valueB > 83
valueA valueB >= 84
valueA valueB AND 84
valueA valueB OR 84
VARTYPE 80

W
WHILE 63
WHOCHAT 46
WHOME 46
WHONAME 47
WHOPOS 47, 81
WHOTARGET 47

